


```
Quarterly Journal of Economics and Modelling Shahid Beheshti University
```


بر آورد هز ينههاى رفاهى انحصار در صنعت خودروى ايران

```
*
دكتر تيمور محمدى*
دكتر حميد ناظمان**
علماصغر سالم"**
```

چچكيله
salem207@yahoo.com
 9 $/ \pi / \pi / ヶ$
(\%\% : دانشجوى دكترى اقتصاد دانشگَاه علامه طباطبايى(نويسنده مسئول)
تاريخ دريافت
جr/\&/ヶ

ا. مقدمه

با نگاهى به برنامههاى توسعئ اقتصادى، اجتماعى ايران مشاهده مىشود كه يكى از الزامـات برنامههاى توسعهٔ اير ان ارتقاى رقابت در بخشت هـاى اقتصـادى اســت، طـورى كــه در قـانون برنامئ سوم توسعه و نيز در موادى از قانون برنامئ چهارم و پنجم تو سعه به اين موضو
 جلـو گيرى از انحصـارات شـده اسـت. از ايـنرو در راسـتاى كنتـرل رفتارهـاى غير رقـابتى، مىبايست بهصورت مستمر بازارهاى مهم اقتصادى مورد پايش قرار گیـرد. بـر ايـن اسـاس، هز ينههاى رفاهى ناشى از انحصار در صنعت خودروى سوارى ايران بر آورد شده است. صنعت خودروسازى با قدمت زياد به دليل ارتباطات پسين و پيشـين گسـتردهاى كـه بـا ساير صنايع دارد، از جايگاه مهمى در برنامهريزى هـاى تو سـعأ صـنتتى كشـو رها برخـور ردار است اين امر سبب شده تا لقب موتور تو سعئ صنعتى كشورها را ا از آن خود سازد. صنعت خودرو در ايران نيز بيش از 9 ادرصـد ارزش افزودهُ بخـش صنعت را تشـيل مىدهد؛ طورى كه بر اساس گزارش سـازمان جهـانى تجـارت، صـنعت خـودروى ايـران بـا ارزش افزوده r/V ميليارد دلارى در سال هـ + ب بين صنايع كارخانهاى ايران بيشترين سهم از ارزش افزوده بخش صنعت را به خود اختصاص داده اسـت و از ايـن نظر در رتبــٔ نخسـت

 براى حدود صدها هزار نفر به طور مستقيم، شغل ايجاد نمـوده اسـت(گَزارش سـازمان جهـانى تجارت در سال هه ••). بنابر اين، اين صنعت به دليل آثار مهم آن بر توليد، اشتغال، سـود آورى و پيشرفتهاى فنى به عنوان صنعتى پيشرو شناخته شــده و همـواره مـورد توجـه مسـئولان و سياست گذاران قرار گرفته است. از آنجا كه صنعت خودرو سازى در ايران در اختيار تعداد محدودى شر كت قرار دارد لذا بررسى زيانهاى رفاهى تحميلى بـه مصـرف كنتــه در ايـن صنعت بسيار حايز اهميت است.

مطالعهٔ حاضر درصدد به كار گيرى يكى از دقيقترين روشها (ليبنشتاين و كومانور ') در
 ناكارايى تخصيصى، آثـار رفـاهى ناشـى از ناكـارايى X را كـه يكـى از پيامـدهاى سـاختار انحصارى است، در نظر مـى گيرد. بخـش دوم ايـن مقالـه، بــه بيــان مختصـرى از مطاللـات
 ارزيابى كارايى در صنعت خودروسازى و در بخشش خهـارم، روشهـاى بـر آورد وضـيت تقاضاى بازارى خودروى سوارى مورد بررسى قرار گرفته اسـت. در بخـش پـنجم دادههـا، تخمين و نتايج بر آوردها شرح داده شده و در بخش ششم نتيجه ارائه شده است.

「「. روشهاى سنجش هز ينههاى رفاهى انحصار

روش هاى متعارف سنجش هزينههاى رفاهى انحصار معيار هـاربر گر، تـولاكك، ليبنشتاين و كومانور، پوزنر، بر گسون، كالينگک و مولر، مسان و شنان و وندرز است كه به طور خلاضــهـ به معيارهاى هاربر گر و ليبنشتاين و كومانور اشاره مى گردد.

 هز ينههاى انحصار ابتدا تصويرى از يكك اقتصاد در تعادل بلندمدت ترسيم و سپس آن را بـا بازارهاى واقعى مقايسه نمود. در تعادل بلندمدت بازده سرمايه گذارى براى تمامى بنگاهها و
 خصوصيت هستند و رفتارهاى غير رقابتى مانع تخصيص بهينــٔ منـابع و حـداكثر شـدن رفـاه اجتماعى مى شوند. تفاوت نرخ سود در صنايع مختلف، تخصيص غير بهينٔ منابع بين آنها را
 كمتر از حد بهينه، از منابع مصرف نمودهاند را شناسايى نمود (خداداد كاشى ••ی|)

هاربر گر با استفاده از ايدهٔ هاتلينگك به اين نتيجه رسـيد كـه ميزان اخـلال در تخصيص
منابع را كه منجر به زيان اجتمـاعى و كـاهش رفـاه مصـرف كنــد گان در جامعـه مـىشـود، مى توان بر حسب مثلث رفاه بيان نمود. براى بهدست اوردن شاخص هاربر گر بهصورت زيـر مى توان مثلث رفاه را به شاخص كمى اقتصادى تبديل نمود:

$$
\begin{aligned}
& D W L=\frac{1}{2} \Delta P \cdot \Delta Q \\
& E=\frac{\Delta Q}{\Delta P} \cdot \frac{P}{Q} \rightarrow \Delta Q=\frac{\Delta P}{P} \cdot E \cdot Q
\end{aligned}
$$

$$
D W L=\frac{1}{2} \cdot \frac{\Delta P}{P}\left(\frac{\Delta P}{P} \cdot E \cdot Q\right) P=\frac{1}{2}\left(\frac{\Delta P}{P}\right)^{2} P \cdot Q \cdot E
$$

$$
L=\frac{\Delta P}{P} \rightarrow D W=\frac{1}{2} L^{2} P \cdot Q \cdot E
$$

كه DW L خالص زيانهاى رفاهى ناشى از انحصار و 1 و ΔQ و به ترتيب تغيير در مقدار و قيمت به دليل انحصارى شدن بـازار و E كشـش قيمتى تقاضاسـت. بـراى محاسـبئ هزينههاى رفاهى مىبايست مقدار اخلال قيمتى يا به عبارت ديگـر شـاخص قـدر تـارت بـازارى () مشخص گردد.

هاربر گر پس از مشخص نمودن پايههاى نظرى و روش محاسـبئ قـدرت انحصـارى، از
 صنعت طى دورهٔ IGYY-Yイ بـود؛ استـفاده نمـود. در ايـن دوره هأادرصـد از كـل فـروش و
 هادرصد از توليد ناخالص ملى آمريكا به بخش صنعت تعلق دارد. محاسبات هاربر گر نشان مى دهد كه زيانهاى رفاهى ناشـى از انحصـار در بخـش صـنعت معـادل //• درصــد توليــد ناخالص ملى است. وى فرض نمود چچانچهه قدرت انحصـارى در سـاير بخششهـاى اقتصـاد مشابه بخش صنعت باشـد، هزينههـاى رفـاهى انحصـار در كـل اقتصـاد آمريكـا طـى دوره

I9YF-YA
 كه بر عدم دخالت دولت تأكيد دارند، گرديد (خداداد كاشى •^זرا). پٍ از انتشار كار هاربر گر، انتقادات متعددى بر روش و كار وى صورت گرفت. روش هاربر گر به دلايل مختلف تخمين پايينى از هزينههاى انحصار به دسـت مـىدهـــــ، زيـرا ا اولاً بهرغم اينكه هاربر گر در ابتدا تصويرى از يك اقتصـاد در شـرايط عمـومى بلندمــدت ارائـه

 متوسط سود بخش صنعت در نظر گرفته شد كه اين خود موجب مى شود تخمين بـالايى از
 رقابتى موجب مى شود تخمين هزينههـاى رفـاهى انحصـار دجـار تـورش شـود و در نهايـت كارايى نهادهها در وضعيت عملكرد رقابتى و انحصارى را يكسان در نظر گرفت.

 زيان رفاهى ناشى از انحصار افزون بر (اناكارايى تخصيصى)، شـامل گسـترش در (اناكـارايى
 دادند كه واحدهاى داراى قدرت انحصارى با برخوردارى از حاشئه سود بالا كه بـه عنوان چتر محافظ مقابل ايشان به شمار مىرود، ممكن است انگیزه́ چندانى براى استفادهٔ بهينـه از نهادههاى خود و عملكرد در سطح حداقل هزينهها نداشته باشـنـد. ايـن امـر موجـب كـاهـش كارايى يا به اصطلاح بروز ناكارايى x در سطح بنگاه بررسى شده مىشود و بنابراين، آثار
 خ $W_{x}+W_{a x}$ ناكارايى تخصيصى انحصار به وجود آمله و با مساحت مثلث ABC نشان داده شــده اسـت. از سوى ديگر، XX بيانگر زيان رفاهى حاصل از ناكارايى x اسـت كـهـ از انحصـار حاصـل

بر آورد هزينه هاى رفاهى انحصار در صنعت خودروى ايران 97
 ADF بـا مساحت مثلـث x نا كارايى تخصيصى ناشى از انحصار است كه به لحاظ نا كارارايى نشان داده شده است. لذا طبق نمودار و بـا فرض اينكـه x اختـلاف هز ينـه ميـان انحصـار و رقابت مى باشد، خواهيم داشت:
$W_{a}=a q_{1} / 2$
$W_{a x}=(a+x)\left(q_{1}+q_{2}\right) / 2$
با توجه به تحليل بالا، ليبنشتاين و كومانور نشان دادند اختلاف هزينــٔ ناشـى از انحصـار
بزر گتر از حاشئُ قيمت- هزينه است و به تبع آن، زيـان در ناكـارايى تخصيصـى بـه مر اتـب
 در آمدهاى صريح رفاهى مرتبط بـا اثـر هزينـهاى رقابـت باعـث مـى شـود تـا احتمـال بهبـود موقعيت رفاهى به دليل انتقال يكك صنعت از وضعيت انحصار (به ويزه انحصارات مصنوعى يا دولتى) به رقابت، به هر دو لحاظ تخصيصى و همچنين انگيزشى (نا كارايى) وجود داشته

در رابطـه بــا سـنجش مقــدار x بـه لحـاظ كمـى، طبـق آنجّـه بر گـر و مسـتر (I (199V)،
 خطاى تر كيبى به صورت رابطهٔ زير استفاده مى شود:

1. Molyneux and Liu (2000)
2. Sathye (2001)
$\ln C=f(p, q, z)+\ln u+\ln v$
x (ln
به صورت زير به دست مى آيد:
$x=1-\frac{C^{\text {min }}}{C^{b}}=1-\left[\frac{\exp \left(f\left(p^{b}, q^{b}, z^{b}\right) \times \exp \left[\ln \hat{u}_{c}^{\text {min }}\right]\right.}{\exp \left(f\left(p^{b}, q^{b}, z^{b}\right) \times \exp \left[\ln \hat{u}_{c}^{b}\right]\right.}\right]=\left[1-\frac{\hat{u}_{c}^{\text {min }}}{\hat{u}_{c}^{b}}\right]$
 ناكارايی فنى (ناكارايى ديگر بنگاهما (

تخصيص و ناكارايى x) برابر خواهد بود با :
$W_{\text {Total }}=W_{a x}+W_{x}=\frac{1}{2} q_{m} p_{m} \eta\left(\frac{\left(p_{m}-c_{m}\right)+\left(1-\frac{\hat{u}_{c}^{\text {min }}}{\hat{u}_{c}^{b}}\right)}{p_{m}}\right)+\left(q_{m} \cdot\left(1-\frac{\hat{u}_{c}^{\text {min }}}{\hat{u}_{c}^{b}}\right)\right)$

 از نسبت كارايى فنى آنها قابل محاسبه است.

「, ا, ا. مطالعات داخلى

در ايران نيز تعداد محدودى مطالعهٔ كاربردى جهت بررسـى هزينـههـاى اجتمـاعى انحصـار

خداداد (• ^Nا) در مقالهاى هزينههاى اجتماعى انحصـار در بخـش صـنعت ايـران را بـا

تمر كز در صنعت بيمه نمـوده اسـت. وى در مطالـــٔ خـود بـراى شناسـايى سـاختار بـازار از شاخصهاى تمر كز استفاده كرده و نتيجه گرفته كه ساختار بازار بيمه در ايـران بـه صـورت انحصار مؤثر است؛ همحثنين وى براى محاسبُّ هزينههاى اجتماعى انحصار از شـاخصهـاى
 كه هزينه هاى رفاهى اجتماعى به دليل ساختار انحصارى تحميل شده در اين صنعت در سال「

محاسبءٔ هز ينههاى اجتماعى انحصار طى دوران INVA-INAF اقدام نموده است. وى ابتـدا بـا استفاده از شاخص هرفيندال- هير شمن و نسبت تمر كز به بر رسى وجود تمر كـز ودر نهايـت انحصار در اين بازار مى پردازد و با استفاده از منحنى لورنز و منحنى تمر كـز وجـود قـــر ت انحصارى در ميان بانكك ها را با استفاده از متغير تسهيلات نشان مىدهدل و نتيجه مى گيرد كه با حر كت از سمت بانكك هـاى كوجـك بـه سـمت بانـك هـاى بـزر گك، قـدرت انحصـارى افز ايش يافته است. وى آنگاه هزينههاى اجتماعى ناشى از چنين انحصـارى را بـا استفاده از روش كالينگك-مولر اندازه گيرى مىنمايد. به منظور بر آورد هزينهٔ نهايى، يك تانع هزينه به

 گرفته است. نتايج حاكى از آن بوده است كه رفاه از دست رفتـئ ناشـى از انحصـار در در ايـن صنعت برابـر بـا 9 درصـد ارزش فـروش بـوده اسـت، ضـمن آنكـه در بـرآورد هزينـهــاى اجتماعى انحصار پیى به وجود صر فههاى اقتصادى مقياس در اين صنعت برده شده است. شفيعى (1) (1) در رسـالئ دكتـرى خـود بـه سـنجش آثـار رفـاهى عملكـرد در صـنعت بانكدارى ايران با استفاده از دادههـاى تر كيبى نـاموزون IV بانـك دولتـى و خصوصى در
 صـنعت بانكـدارى ايـران از دو روش هـاربر گر و ليبنشـتاين استفاده شـده اسـت. در روش

پپرداخته مىشود در حالى كه در روش ليبنشتاين افزون بر لحاظ ناكـارايى تخصيصى، آثـار رفاهى ناشى از ناكارايى x نيز در محاسبات وارد مى شود. نتايج به دست آمـــه از روش اول مبين سطح پايين هزينههاى رفاهى و كمابيش معادل ا درصد ارزش توليد ناخـالص داخلـى سال IrAv است. رقم مذكور با استفاده از روش دوم (لحاظ آثار رفاهى ناكارايى x) بسـيار بالاتر و معادل \& درصد ارزش توليد ناخالص داخلى سال I I است. هادىفر (•هچا) در رسـاله دكترى خـود هزينـهــاى اجتمـاعى انحصـار را در صـنعت

 تخمين از روش SUR با استفاده از دادهاى تجميعى (Pool) صورت گرفته است همچچنين با
 دست آمده است و در پايان براى نشان دادن اهميت ميز ان هزينههاى اجتمـاعى انحصـار در

 زده شده جمع یذير ناحيهاى بوده، لذا شر كت مخابرات ايران داراى انحصار طبيعى اسـت و

 اين بخش به شدت وجود دارد. تفاوت عمدهٔ اين مقالـه بـا پـرُوهشهــاى انجـام شــده در ايـران آن اسـت كـه در عمـــهـ

 لگاريتمى كه از دقت نظر كمترى برخور ردار است؛ استفاده شده است. همحنـين هزينـهـهـاى اجتماعى انحصار براى صنعت خودروى ايران كه مهمترين صنعت كار كار خانهاى ايـران اسـت

```
بو بر آورد هز ينههاى رفاهى انحصار در صنعت خودروى ايران \V 
```

با دقت نظر كافى شامل عدم كارايى تخصيص و عدم كارايى x بر سى نگرديده اسـت. در اين مطالــه سـى مـى شـود كشـش تقاضـاى بـازار خـودرو از طريـق بــه كـار گيرى سيسـتم
 هزينٔ ترانسلو گك استفاده خواهد شد.

「. روشهاهى سنجش كارايى

دو روش عمده براى تخمين كارايى بنگاهها، روش تحليل پوششى دادهها (DEA) و روش تحليل مرزى تصادفى (SFA) اسـت. در روش تحليـل پوششى دادههـا، تخمـين كـارايى و صرفههاى مقياس، با استفاده از سيستم برنامهريزى رياضى صورت مـى گيـرد. در ايـن روش محلدوديتى در انتخاب تعداد نهادهها و ستادهها و جود نداشته و هيج گونه نيازى بــه انتخـاب

نوع تابع هزينه يا توليد نيست.
روش تحليل مرزى تصادفى با استفاده از روشهاى اقتصـاد سـنجى بـه تخمـين كـارايى

 از آنجا كه در اين مطالعه در بر آورد كارايى از رويكرد تحليل مرزى تصادفى استفاده شـــهـ
است مبانى نظرى آن به صور ت اجمالى توضيح داده مى شود.

روش SFA يا روش پارامتريك با استفاده از مدله هاى اقتصاد سنجى و تخمين تابع هزينه يـا يـا
 از حداقل مقدار هزينٔه بنگاههاى مختلف در يك رينعت خاصر، تخمين زده شده و تفـاوت
 بهشمار مى آيد.
 نهايی، از روش تابع هزينةٔ مرزى تصادفى براى محاسبئ كارايى استفاده شده اسـت لــذا ايـن

1. Stochastic Frontier Analysis

روش به صورت مختصر بيان مى گردد.
مدل اوليه تابع هزينه مرزى به صورت زير زير است:
$C_{i t}=C\left(Y_{i t}, W_{i t}, \beta\right)+v_{i t}+u_{i t} \quad i=1,2, \ldots, N \quad t=1,2, \ldots, T$

 يكك طرفه با توزيع نيمه نرمال يا نرمال منقطع است و مشخص كتندهُ ميـزان نا كـارايى اسـت. جزء
اندازه فر اتر از حداقل هز ينه فعاليت مى كند.

در اين الگو با فرض مستقل بودن u و v، مى توان ضرايب β ، واريانس u و واريانس v
 (اراى چولگی منفى و محاسبهٔ كارايى نيازمند آن است كه الگَو بـا روش حـداكثر
راستنمايى تخمين زده شود. (امامى ميبدى I IVQ)
 كارايى در طول زمان دلالت مى كنند. هر چه طول دورهٔ زمانى بزر گکتـر شـود، ايـن فرض
 (1999) و كامبهاكار (•199)، بيتيس و كوئلى (199Y)، برداشته شد. اين افـراد تـابع مـرزى تصادفى را پيشنهاد دادند كه قابليت به كـار گيرى دادههـاى تلفيقى را داشـت. آنهـا فـرض كردند اثرات نا كارايى بنغاه، متغيرى با توزيع نرمال منقطع است و قابليت تغيير سيستماتيك
آن در طول زمان مشاهده مى شود.

در اين الگوها نا كارايى مى تواند بر اساس اميد رياضى شـرطى u بر حسـب ارزش متغير تصادفى $\varepsilon=u+v$ بيش

 راستنمايى و كارايى ارائه مى گردد.

r, r. التَوى بيتيس و كوئلى (199r)

بيتيس و كوئلى (199Y) يكك تابع توليد مرزى تصادفى پيشنهاد كردند كه توزيع جزء عـــد كارايى آن به صورت متغير تصادفى نرمال منقطع در صفر ' است و به صـورت سيستماتياتيك
 صورت زير استّ!
$y_{i t}=x_{i t} \beta+\left(v_{i t}-u_{i t}\right) \quad i=1, \ldots, N \quad t=1, \ldots, T$
كــــه در آن

$$
\text { و } \text { پ پارامترى است كه بايد تخمين زده شود. }
$$

نكتئ مهم نحوهٔ تفكيك اثر ناكارايى از اثر تصادفى در متغير پسماند اسـت. ايـن كـار از
طريق تغيير پارامتر زير كه تو وط بيتيس و كورا (19VV) ارائه شده، انجام شده است: $\gamma=\sigma_{u}^{2} / \sigma_{s}^{2} \quad \sigma_{s}^{2}=\sigma_{v}^{2}+\sigma_{u}^{2}$ و در نهايت تابع حداكثر راستنمايى در شكل لكاريتمى به شرح زير است:
$\ln L(\varphi(\theta))=-\frac{1}{2}\left[\sum_{i=1}^{N} T_{i}\right]\left[\ln (2 \pi)+\ln \left(\sigma_{s}^{2}\right)\right]-\frac{1}{2} \sum_{i=1}^{N}(T-1) \ln (1-\gamma)$
$-\frac{1}{2} \sum_{i=1}^{N} \ln \left[\left(1+\left(\eta_{i}^{\prime} \eta_{i}-1\right) \gamma\right]-N \ln [1-\Phi(-z)]-\frac{1}{2} N z^{2}+\sum_{i=1}^{N} \ln \left(1-\Phi\left(-z_{i}^{*}\right)\right)+\frac{1}{2} \sum_{i=1}^{N} z_{i}^{* 2}\right.$
$-\frac{1}{2}\left[y_{t}-\left(\alpha+x_{t}^{\prime} \beta\right)\right]^{\prime}\left[y_{t}-\left(\alpha+x_{t}^{\prime} \beta\right)\right] /\left[(1-\gamma) \sigma_{s}^{2}\right]$

1. Truncated At Zero

「. بيتيس و كوئلى الگوهاى خود را براى تخمين كارایى در يك تابع توليد طراحى كردهاند و جزء پسماند به صورت
 حاصل مىشود. به طور مثال در تابع هزينه، ناكار ايى باعث افزايش هزينه مى شـود لذا علامت مابين مثبت در نظر گرفته شده و ${ }^{\text {ت }}$ نيز بايد غير منفى فرض شود. اگر تابع توليد در نظر گرفته شود، ناكار ايى باعث كاهش

$$
\begin{aligned}
& z_{i}^{*}=\mu(1-\gamma)-\gamma \eta_{i}^{\prime}\left[y_{i}-\left(\alpha+x_{i} \beta\right)\right] /\left\{\gamma(1-\gamma) \sigma_{s}^{2}\left[1+\left(\eta_{i}^{\prime} \eta_{i}-1\right) \gamma\right]\right\}^{1 / 2} \text { كه } \\
& z=\mu /\left(\gamma \sigma_{s}^{2}\right)^{\frac{1}{2}} \quad, \quad \theta \equiv\left(\beta^{\prime}, \sigma_{s}^{2}, \gamma, \mu, \eta\right) \quad \text {, } \\
& \Phi(.)=\text { تابع توزيع تجمعى متغير تصادفى نرمال استاندارد } \\
& T E_{t}=E\left(\exp \left\{-U_{i t}\right\} \mid E_{i t}\right) \\
& =\left\{\frac{1-\Phi\left[\eta_{i t} \sigma_{i}{ }^{*}-\left(\mu_{i}{ }^{*} / \sigma_{i}{ }^{*}\right)\right]}{1-\Phi\left[-\left(\mu_{i}{ }^{*} / \sigma_{i}{ }^{*}\right)\right]}\right\} \exp \left(-\eta_{i t} \mu_{i}{ }^{*}+\frac{1}{2} \eta^{2}{ }_{i t} \sigma_{i}{ }^{* 2}\right) \text {. } \\
& E_{i t}=V_{i t}-U_{i t} \\
& \mu_{i}{ }^{*}=\frac{\mu \sigma_{v}{ }^{2}-\eta_{i}{ }^{\prime} E_{i} \sigma_{u}{ }^{2}}{\left(\sigma_{v}{ }^{2}+\eta_{i}{ }^{\prime} \eta_{i} \sigma_{u}{ }^{2}\right)} \text {; } \\
& \sigma^{*}=\frac{\sigma_{u}{ }^{2} \sigma_{v}{ }^{2}}{\left(\sigma_{v}{ }^{2}+\eta_{i}{ }^{\prime} \eta_{i} \sigma_{u}{ }^{2}\right)} \text {. } \\
& \text { آنحه در روش تابع مرزى تصادفى بيتيس و كوئلى بحث شد، محور استدلال، تابع توليد } \\
& \text { است، ليكن در چارچوب نظر يههاى اقتصـاد خـرد، تو ابـع توليـد و هزينـه دو گـان يكـديگر } \\
& \text { محسوب مى شود و با استفاده از تابع هزينه افزون بـر كــارايى فنـى، كـارايى تخصيصى هـم } \\
& \text { قابل اندازه گيرى است. }
\end{aligned}
$$

ع. مدل تقاضاى سيستمى تقر يباً ايدهال

رويكرد جديدى مرسـوم دربـر آورد پارامترهـاى تقاضـا، استـفاده از فـرم سيسـتم معـادلات همزمان اسـت. يكـى از علـل برترى هـهـاى ايـن انتخـاب ايـن اسـت كــه همـان طـور كـه در نظر يههاى اقتصاد خرد بيان شده، تغيير در يكك بازار بر ساير بازارهـاى اقتصـادى تأثير گـذـار است به همـين دليـل اقتصـاددانان تحليـل هـاى سيستـمى را بـر فـرم تـك معـادلات تـر جيح مىدهند.
الگوى سيستم تقاضاى تقريباً ايده آل براى نخستين بار توسط ديتون و مولبـاور در سـال

يافتـى لگـاريتمى مسـتقل از سطع قيمـت (بـه نـام PIGLOG)' ارائـه نمودنـد كـه بيـانگر مجموعهاى ازتوابع هزينهاى است. در واقع اين سطح حداقل هزينه را براى دستيابى به سطح
 صورت c(u,p) نشان داده شده كه تابع دو عامل مطلوبيت u و سطح قيمت p مى C ماشد. گروه مخارج PIGLOG به صورت زير نمايش داده مىشوند.
$\log c(u \cdot p)=(1-u) \log \{a(p)\}+u \log \{b(p)\}$
مقدار u در دامنه ميان (, , •) قرار دارد كه صفر بيانگر حداقل معيشت، و يك؛، حداكثر
رفاه است و توابع a(p) و (b(p) توابع مثبت ، همگن و خطى از سطح قيمت هستند.
لكاريتم سطح حداقل هزينهٔ معيشتى و سطح حدا كثر رفاه در اين الگو به شكل ونل زيرند: سطح حداقل معيشت :
$\log a(p)=a_{0}+\sum_{k=1}^{n} a_{k} \log p_{k}+1 / 2 \sum_{k=1}^{n} \sum_{j=1}^{n} \gamma_{k j} \log p_{k} \log p_{j}$ سطح حداكثر رفاه:
$\log b(p)=\log a(p)+\beta_{0} \prod_{k} p_{k}^{\beta_{k}}$
بنابر اين اگر اين روابط در تابع هزينه AIDS جايگزين شود عبارت زير به دست مى آيد: $\log c(u, p)=a_{0}+\sum_{i=1}^{n} a_{i} \log p_{k}+1 / 2 \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{i j} \log p_{i} \log p_{j}+u \beta_{0} \prod_{i=1}^{n} p_{i}^{\beta_{i}}$ كه درآن سيستم است و
 $\log p_{i}$
 اين تبديلات به شكل زير انجام مىشوند.
$\frac{\partial c(u, p)}{\partial p_{i}}=q_{i} \Rightarrow \frac{\partial c(u, p)}{\partial p_{i}} \cdot p_{i} / c=\frac{p_{i} q_{i}}{c}=w_{i}$
$\Rightarrow w_{i}=\frac{\partial \log c(u, p)}{\partial \log p_{i}}=a_{i}+\sum_{j=1}^{n} \gamma_{i j} \log p_{j}+\beta_{i} u \prod_{k} p_{k}^{\beta_{k}}$
و از آنجايى كه در مواقعى كه افراد بـه دنبـال حـدا كثر كـردن مطلوبيـت خـود هسـتند
مخارج كل c(u,p) با كل در آمد آنها برابر مى شود با جـايگزينى در معادلــٔ بـالا در نهايـت عبارت زير حاصل مى شود.
$w_{i}=a_{i}+\sum_{j=1}^{n} \gamma_{i j} \log p_{j}+\beta_{i} \log \left(y / p^{*}\right)+u_{i}$
 شاخص قيمت كل ترانسلو گٌ مىباشد كه به صورت زير تعريف مىشود:
$\operatorname{Ln} p=\alpha_{0}+\sum_{k} \alpha_{k} \operatorname{Ln} p_{k}+\frac{1}{2} \sum_{j} \sum_{k} r_{k j} \operatorname{Ln} p_{k} \operatorname{Ln} p_{j}$
همانطور كه ملاحظه مى شود بــه دليـل درونـزا بـودن شـاخص قيمـت، الگَـوى سيسـتم
تقاضاى تقريباً ايدهال غير خطى است. با جايگزينى از شاخص هاى مختلف مىتوان الگـوى
 حالت شاخص قيمت به شكل برونزا فرض شده و در مدل وارد مى شود. شايان ذكر است كه تقريب خطى الگوى سيستم تقريباً ايـدهـاTل LA/AIDS را مـىتـوان به دو صورت ايستا و پويا مطرح كرد. ديتـون و مولبـاور ذكـر كردنــد كـه فـرم ايستـا پـون جنبههاى پوياى رفــار مصـرف كنتـده را در نظر نمـى گيـرد ممكـن اسـت تشـريحى كـاملاً رضايتبخش از رفتار مصرف كننده را ارائه ندهند، به همين دليل در اين مقاله از فرم تابعى سيستم تقاضاى تقريباً ايده آل پويا استفاده شده است كه عبارت است از:
$w_{i}=a_{i}+\sum_{j=1}^{n} \gamma_{i j} \log p_{j}+\beta_{i} \log \left(y / p^{*}\right)+\varphi w_{i-1}+u_{i}$

بر آورد تجربى حالات مختلف سيستم تقاضاى تقريباً ايدهآل نشان داده است كـه شـكل پوياى سيستم كه در آن مخارج هر گروه كالايى بـا يـك وقفـه بـه عنـوان متغيـر توضـيحى ($\left(\phi w_{i-1}\right)$)

عَ, ا. محاسبهُ كششه ها در الَّوى AIDS
 كشش ها را محاسبه و سپّ آنها را تفسير كرد. براى محاسبئ كششهاى قيمتى (جبران شده و نشده) و كشش هاى مخارجى (در آمدى) فرمولهاى مختلفى توسط كالفانـت ' (19AV)،

 ضمن بيان ايرادات آنها، بر اساس آزمايشهاى مونت كـارلو توانسـت فرمـولهـاى اصـلاح شدهاى را براى محاسبؤ كششها ارائه كند. كه اين فرمولها به صورت زير هستند. ا. كشش قيمتى جبران نشده (مارشالى) :
$\varepsilon_{i j}=-\delta_{i j}+\left[\gamma_{i j}-\beta_{i}\left(w_{j}+\sum_{k} \gamma_{k j} \log p_{j}\right)\right] / w_{i}$
$\varepsilon_{i j}=-\delta_{i j}\left(\frac{\gamma_{i j}}{w_{i}}\right)+w_{j}$
r. كشش قيمتى جبرانى (هيكسى):

$\delta_{i j}=1+\frac{\gamma_{i j}}{w_{i} w_{j}}, i \neq j \quad$ كشش جانشينى Tلن:
از اين كشش براى بـهدسـت آوردن شـدت رابطـُ جانشـينى و مكملـى كالاهـا استفاده مىشود. اگر 0 > 0 باشد رابطهُ جانشينى قوى و اگر 0 > 0 > 0 باشد رابطهُ مكمل قوى بـين كالاها وجود دارد.

1. Chalfont
2. Modafri \& Brorsen
3. Green \& Alston
4. Buse

0. دادهها، بر آورد مدل و تجز يه و تحليل نتايج

 تقاضاى تقريباً ايدهال استفاده شده است. 0, ا. بر آورد تابع هز ينهُ مرزى تصادفى

 تصادفى به منظور بر آورد كارايى اقتصادى بنگاههاى خودروسازى به صورت زير است:

$$
\begin{aligned}
& L n T C_{i t}=b_{0}+b_{l} \ln P_{l i t}+b_{k} \ln P_{k i t}+b_{d} \ln P_{d i t}+b_{e} \ln P_{e i t}+b_{y} \ln y_{i t}+\frac{1}{2} b_{l l}\left(\ln P_{l i t}\right)^{2}+ \\
& \frac{1}{2} b_{l k} \ln P_{l i t} \ln P_{k i t}+\frac{1}{2} b_{l d} \ln P_{l i t} \ln P_{d i t}+\frac{1}{2} b_{l e} \ln P_{l i t} \ln P_{e i t}+\frac{1}{2} b_{k k}\left(\ln P_{k i t}\right)^{2}+\frac{1}{2} b_{k d} \ln P_{k i t} \\
& \ln P_{d i t}+\frac{1}{2} b_{k e} \ln P_{k i t} \ln P_{e i t}+\frac{1}{2} b_{d d}\left(\ln P_{d i t}\right)^{2}+\frac{1}{2} b_{d e} \ln P_{d i t} \ln P_{e i t}+\frac{1}{2} b_{e e}\left(\ln P_{e i t}\right)^{2}+b_{l y} \ln P_{l i t} \\
& \ln y_{t i t}+b_{k y} \ln P_{k i t} \ln y_{i t}+b_{d y} \ln P_{d i t} \ln y_{i t}+b_{e y} \ln P_{e i t} \ln y_{i t}+\frac{1}{2} b_{y y}\left(\ln y_{i t}\right)^{2}+b_{t} t+\frac{1}{2} b_{u t} t^{2}+ \\
& b_{y t} t \ln y_{i t}+b_{l t} t \ln P_{l i t}+b_{k t} t \ln P_{k i t}+b_{d i t} \ln P_{d i t}+b_{e t} \ln P_{e i t}+v_{i t}+e^{\left(-\eta(t-T) u_{i t}\right)}
\end{aligned}
$$

 l $P_{l i t}$ در زمان t؛ : $P_{\text {dit }}$ زمان t؛
دادههاى مورد استفاده در الگوى فـوق بـه صـورت پنـل متـوازن بـوده و مربـوط بـه 9 بنگـانـا

 همحِنين، روش حداكثر درستنمايى به بنگاههاى كارا الجازه مىدهدل كه در تعيين مرز هزينـه
 به مشاهدات دور افتاده وزن يكسان مىدهد، بكاهدا

 صورت زير به دست مى آيد:
$x=1-\frac{C^{\text {min }}}{C^{b}}=1-\left[\frac{\exp \left(f\left(p^{b}, q^{b}, z^{b}\right) \times \exp \left[\ln \hat{u}_{c}^{\text {min }}\right]\right.}{\exp \left(f\left(p^{b}, q^{b}, z^{b}\right) \times \exp \left[\ln \hat{u}_{c}^{b}\right]\right.}\right]=\left[1-\frac{\hat{u}_{c}^{\text {min }}}{\hat{u}_{c}^{b}}\right]$
 ناكارايى فنى（ ${ }^{\text {（ }}$ ）است كه به عنوا نا كارايى ديگر بنگاهها（ جزء ناكارايى x به تفكيكك هر بنگاه در طول دوره بر برسى شـده، استخراج و نتـايج آن در جدول r نشان داده شده است．

جدول ا．نتايج براورد تابع هزينٔه مرزى تصادفى در صنعت خودروى سوارى ايران

tor	ضريب	متنير	tor	ضريب	متغير
r／al09	－／4AVF	$\ln P_{l i t}{ }^{2}$	$1 r a / \Delta r \cdot 1$	1ra／\0rq	عرض از مبدا
	－－／11＾9	$\ln P_{l i t} \ln P_{\text {eit }}$	f／arfy	F／runc	$\ln y_{i t}$
－／1990	－．／ヶ99	$\ln P_{l i t} \ln P_{d i t}$	－9／0．11	－D／FITD	$\ln p_{k i t}$
$r / 0.90$	－／09＾D	$\ln P_{\text {eit }}{ }^{2}$	－19／4\％	－N／r．Yr	$\ln p_{l i t}$
1／9var	－／riva	$\ln P_{\text {eit }} \ln P_{\text {dit }}$	－r／9919	－r／Ar． 1	$\ln P_{\text {eit }}$
r／．19\％	－／Tه八f	$\ln P_{\text {dit }}{ }^{2}$	－v／alvo	－－／r．+9	$\ln P_{\text {dit }}$
－1／MYFY	－．／．1ry	t^{2}	－r／009	－•／．ry9	$\ln y_{i t}{ }^{2}$
－／949\％	－／．990	$\ln y_{i t} t$	1／Y91	－1．989	$\ln P_{k i t} \ln y_{i t}$
r／IVQD	． 1.911	$\ln p_{k i t} t$	－r／glrg	－．／\AMF	$\ln P_{l i t} \ln y_{i t}$
1／．14＾	．／．ヶへ	$\ln p_{l i t} t$	¢／яイVr	－／1194	$\ln P_{\text {eit }} \ln y_{i t}$
－－Nrar	－．$/ .109$	$\ln P_{e i t} t$	－1／4 ${ }^{\text {che }}$	$-\cdot / \cdot r a r$	$\ln P_{\text {dit }} \ln y_{i t}$
－r／．vra	－－／．MFF	$\ln P_{\text {dit }} t$	－1／99．r	－．1941	$\ln P_{k i t}{ }^{2}$
D／D99	－／．YYV	δ^{2}	1／YYへF	－19．09	$\ln P_{k i t} \ln P_{l i t}$
Dra／r．90	－／999人	γ	－r／\l1	－ $1 / 19 \wedge D$	$\ln P_{k i t} \ln P_{\text {eit }}$
			1／0．9	－／4ヶへ9	$\ln P_{k i t} \ln P_{\text {dit }}$

بر آورد هز ينههاى رفاهى انحصار در صنعت خودروى ايران I•V

ميانگين	1r17	1710	17 N	1rAr	1rar	17 A 1	17λ ．	Irra	بنكاه
$\cdot / \cdot v \cdot 1$	$\cdots \cdot / \cdot \mathrm{VI}$	$\cdot 1 \cdot \mathrm{~W}$	． 1.097	． $1 . .9$	． 1.091	－$/ 7.94$	－／1999	－1．491	1
－1．FV\％	．$/ .19 \mathrm{~V}$	－／Ivav	$\cdots \cdot \cdots \wedge$	$\cdot / \cdot 01$	－	．$/ 1.111$	－／$\triangle \Delta M$	．$/ . .19$	r
－／1190	－／rlir	－／4449a	－／190	－	． $1 . .49$	－	－／lı	－／．．．rr	r
－ハוro	．$/ .4$	－／1F19	－	$\cdot / 1 \cdot 11$	－／ranv	－／\cdot NDF	． 1.940	－／lafa	F
． 1.991	－	－	－ 11.99	$\cdot / \cdot 1$	－／ 19 Va	－／YIV	$\cdot 1.4 \cdot 4$	－	－
． 1.94	－／．ヶ09	－．／．rav		$\cdot / 1 \cdot \mathrm{VQ}$	－／11ヶへ	．$/ \cdot 114$	－	－／rird	9

0，٪．بر آورد تابع تقاضاى سيستمى صنعت خودروسازى：

 بر آورد كشش قيمت تقاضاى خودرو مىباشـلـ．بــدين منظور از سيسـتم تقاضـاى تقريبـاً ايـدهاTل استغاده شده است كه در قسمت قبل مبانى نظرى آن به صورت اجمالى بحث گرديد． جهت بر آورد سيستم تقاضاى تقريبـاً ايــدهآل نيـاز بـه دادههـاى هزينـه－در آمــ خـانوار جهت تعيين سهم كالاها و گروه كالاها در مخارج خانوار و هم־چنين شاخص بهاى مصرفى اين كالاهاست．در اين پثوهش از دامنهُ نسبتاً وسيع و كاملى از دادههاى بودجهٔ خانوار براى بر آورد مدل استفاده شده است، طورى كه از دادههاى فصلى بودجهٔ خـانوار طـى سـاللهـاى ． تخمين و تحليل ها گرديده است．اين دادهها هـر سـاله توسـط مر كـز آمـار ايـران بـر اسـاس طبقهبندى خاص SNA از طريق نمونه گيرى گرد آورى و تحت عنوان＂اطلاعات خام طرح آمار گيرى از هزينه و درآمد خانوارها＂منتشر مىشود．

در تقريب مدل خطى AIDS، از روش رگر سيون معـادلات بـه ظـاهر نـامرتبط（SUR）＇

[^0]استفاده شده است. يكى از مهمترين موارد به كار گيرى مدلهاى SUR در اقتصـاد، تخمـين سيستمهاى معادلات تقاضاست. دليـل آن ايـن اسـت كـه ميـان جـزءاخلال معـادلات سـهـم مخارج همبستگى وجود دارد لذا در اين روش بدين گونه عمل شده كـه يكـى از معـادلات تقاضا را از دستگاه معادلات كنـار گـذارده و پارامترهـاى سـاير معـادلات را تخمـين زده و سِس پارامترهاى مربوط به معادلهٔ كنار گذاشته شده بر مبنـاى قـيـد جمـع یـذـيرى بـر حسـب ساير پارامترها بر آورد مىشود. از آنجا كه بر حسب قيد جمع پذيرى مجموع سـهمهـا برابـر يك است نوع معادلةٔ حذف شده مهم نيست و اين كار بـه دلخـواه انجـام مـى گیـيرد. روش تخمين تكرارى زلنر ' به عنوان بر آورد گرى كارا براى اين سيستم معادلات ارائه شــه و بــه

عقيدهٔ زلنر مانند روش حداكثر درستنمايى در سيستم معادلات خطى عمل مى كند. در مطالعأ حاضر پيش از بر آورد الگو، مانايى متغيرها و آزمـون هـم انباشـتگى مــلـ، و سپّ آزمون محدوديتهاى همخنى، تقارن و منفـى بـودن بررسـى شـده و در انتهـا، مــدل تقاضا بـا اعمـال قيـود كلاسـيكك، بـر آورد و كشـششهـاى قيمتى، جانشـينى و در آمــى آن محاسبه گرديدند.

تصريح فرم تبعى پس از اعمال قيود بهصورت زير است:

$$
\begin{aligned}
& S_{k h}=c_{10}+c_{11} \log \left(P_{\text {kh }}\right)+c_{12} \log \left(P_{\text {mas }}\right)+c_{13} \log \left(P_{\text {otad }}\right)+c_{14} \log \left(P_{\text {otokh }}\right)+c_{15} \log \left(P_{\text {hank }}\right)+c_{10} \log \left(P_{\text {subh }}\right) \\
& +c_{17} \log \left(P_{s q 9}\right)+c_{18} \log \left(\frac{Y}{P}\right)+c_{19} S_{k h}(-4)+\left[A R(2)=c_{111}\right] \\
& S_{\text {ms }}=c_{20}+c_{12} \log \left(P_{\text {kh }}\right)+c_{22} \log \left(P_{\text {ms }}\right)+c_{23} \log \left(P_{\text {oadd }}\right)+c_{24} \log \left(P_{\text {oobh }}\right)+c_{25} \log \left(P_{\text {ham }}\right)+c_{26} \log \left(P_{\text {sumh }}\right) \\
& +c_{27} \log \left(P_{\text {sq }}\right)+c_{28} \log \left(\frac{Y}{P}\right)+c_{29} S_{m s x}(-4)+\left[A R(1)=c_{222}\right] \\
& S_{\text {otad }}=c_{30}+c_{13} \log \left(P_{\text {kh }}\right)+c_{25} \log \left(P_{\text {mes }}\right)+c_{33} \log \left(P_{\text {ootd }}\right)+c_{34} \log \left(P_{\text {oobkh }}\right)+c_{35} \log \left(P_{\text {hank }}\right)+c_{36} \log \left(P_{\text {sukh }}\right) \\
& +\left(-c_{13}-c_{23}-c_{33}-c_{34}-c_{35}-c_{36}\right) \log \left(P_{s q 9}\right)+c_{38} \log \left(\frac{Y}{P}\right)+c_{39} S_{\text {ootd }}(-4)+\left[A R(2)=c_{333}\right]
\end{aligned}
$$

[^1]بر آورد هز ينههاى رفاهى انحصار در صنعت خودروى ايران 1 .
$S_{\text {otokh }}=c_{40}+c_{14} \log \left(P_{\text {kh }}\right)+c_{24} \log \left(P_{\text {mas }}\right)+c_{34} \log \left(P_{\text {otod }}\right)+c_{44} \log \left(P_{\text {otokh }}\right)+c_{45} \log \left(P_{\text {haml }}\right)+c_{46} \log \left(P_{\text {sukk }}\right)$
$+\left(-c_{14}-c_{24}-c_{34}-c_{44}-c_{45}-c_{46}\right) \log \left(P_{\text {squ }}\right)+c_{48} \log \left(\frac{Y}{P}\right)+c_{49} S_{\text {ootkh }}(-4)+\left[A R(1)=c_{444}\right]$
$S_{\text {haml }}=c_{50}+c_{51} \log \left(P_{\text {kh }}\right)+c_{25} \log \left(P_{\text {mas }}\right)+c_{35} \log \left(P_{\text {otod }}\right)+c_{45} \log \left(P_{\text {otokh }}\right)+c_{55} \log \left(P_{\text {haml }}\right)+c_{56} \log \left(P_{\text {sukh }}\right)$
$+\left(-c_{51}-c_{25}-c_{35}-c_{45}-c_{55}-c_{56}\right) \log \left(P_{\text {squ }}\right)+c_{58} \log \left(\frac{Y}{P}\right)+c_{59} S_{\text {haml }}(-4)+\left[\operatorname{AR}(1)=c_{555}\right]$
$S_{\text {sukh }}=c_{60}+c_{16} \log \left(P_{\text {kh }}\right)+c_{62} \log \left(P_{\text {mas }}\right)+c_{63} \log \left(P_{\text {otod }}\right)+c_{64} \log \left(P_{\text {otokh }}\right)+c_{65} \log \left(P_{\text {haml }}\right)+c_{66} \log \left(P_{\text {sukh }}\right)$ $+\left(-c_{16}-c_{62}-c_{63}-c_{64}-c_{65}-c_{66}\right) \log \left(P_{s a y}\right)+c_{68} \log \left(\frac{Y}{P}\right)+c_{69} S_{\text {sukh }}(-4)+\left[A R(1)=c_{666}\right]$

Sotod كل مخارج؛
Sotokh كل مخارج؛ S $S_{\text {sukh }}$ از كل مخارج؛
S haml
مخارج؛
S $S_{k h}$ آشاميدنى ها از كل مخارج؛ : $S_{\text {mas }}$ مخارج؛
Potod قيمتى استون.

نتايج معادلات برازش شــده سيسـتم معـادلات LAIDS مقيـد، در جــدول س ارائـه شــده است. نتايج بر آوردى نشاندهندهُ خوبى برازش مــل و عــدم خـود همبسـتگى در معـادلات بر آوردى است. اكنون با توجه به معادلات مقيد بر آورد شده مى توان كششههـاى در آمـدى و قيمتى گروههاى كالايىى را محاسبه نمود.

جدول پ．．نتايج بر آورد تابع تقاضاى سيستمى AIDS در صنعت خودروى سوارى ايران

احتمال	ضريب	متغير	احتمال	ضريب	متغير
－／・ヘ91	．1．rra	$\mathrm{C}(\mathrm{H} \wedge)$	－／．．．）	1／．r94	C（1．）
－／．．．	－／4910	$C(r q)$	－／•．．．	－／Mrrer	C（1）
．／01Hr	． 1.911 V	C（M）	.19494	$\cdots \cdot / \cdot \wedge \wedge$	C（IY）
－／1990．	－．1．0．9r	C（F．）	\cdots / \cdots	－－1．DTH	C（1\％）
－／VYM．	－．1．．．r	C（FF）	．／＾9 ${ }^{\text {a }}$	\cdots	C（IF）
.19491	$\cdots / \cdots r$	$C(F D)$	－／\cdot ．	－／1191	$C(10)$
.$/ 1901$	$-. / . .44$	C （149）	$\cdot / 4 v \cdot 0$	$\cdots \cdot 1 \cdot r \lambda$	C（19）
－／AIV9	$\ldots 1.19$	C （FA）	－／．\cdot ．	－．／49VV	C（IV）
－／09Y9	－1．9Y4	C（4q）	$.1 .40 \wedge \Lambda$	－．／．YVF	C（1）
－／AYべF	． 1.111	C（FFF）	－／$\cdot \cdots$	－／arkr	C（19）
．／ 11%	． 1.904	$C(\Delta \cdot)$.1 .191	－．／MDVD	C（111）
－／rvar	$\ldots .1 .14$	$C(\Delta 1)$	$\cdots \cdots$	I／QVYY	$C(Y \cdot)$
．／9r1．	$\cdots / \cdots \mathrm{V}$	$C(\Delta \Delta)$	－／VADr	$-.1 .1 \mathrm{FF}$	C（YY）
． $1971 r$	\cdots	$\mathrm{C}(\Delta 9)$	$\cdot 19101$	$\cdots \cdot 1 \cdot 19$	C（YM）
－／101．	$\cdots .1 .199$	$C(\Delta \wedge)$	． 1.999	$-\cdot / \cdot p$	C（YY）
$.1 .1 r 9$	－／09． 4	$C(\Delta Q)$	－／＾gra	$\cdots / \cdot 1 r$	$C(Y \Delta)$
－／kllr	－／MNAM	$C(\Delta \Delta \Delta)$	．／1914	－1．Mra	C（r9）
． 19 mmF	－／．．ro	C（9．）	－／AN19	$\cdot 1 \cdot 1 \cdot \mathrm{~V}$	$C(Y V)$
－／•Vヘ9	$-1 \cdot 109$	C（gY）	．1．1．9	－$\cdot 1 \cdot \mathrm{VAV}$	$\mathrm{C}(\mathrm{Y})$ ）
$\cdots \cdot 1 \cdot 94$	\cdots	C（gr）	．／YDF．	－Mrif	C（YQ）
－ $1 \cdot \mathrm{MrN}$	－／$\cdot \cdots$ 人	C（gy）	－／＊．${ }^{\text {c }}$	．／49．r	C（YYY）
.1 .1 Vr	． 1.14	C（90）	－／llrr	－．／ravr	$C(\stackrel{\mu}{*})$
$\cdots \cdot \cdots 1$	．／．AF	C（94）	． 1.194	－． 1.14%	C（ M ）
.19 .9 V	\cdots	C（9人）		－1．．44	$\mathrm{C}\left(\mathrm{H}_{4}\right)$
$\cdots \cdots$	－／F．MF	C（99）	－／9MFA	－．$/ \cdots \cdot r$	$C(\mu \Delta)$
$\cdot / 11 \cdot 4$	－／YIIV	C（494）	． 1. rrg	$-.1 \cdot 1 \wedge 0$	$\mathrm{C}(\mathrm{ry})$

منبع：نتايج بزوهش جارى

بر آورد هز ينههاى رفاهى انحصار در صنعت خودروى ايران 111

كششه هاى قيمت خودى جبران نشدهٔ كالفنت محاسبه شده، مربو به هر يك از گروههـاى
 استخراج مى شوند．با بررسى كشششهاى قيمتى، مشـاهده مـىشـود كــه كشـش قيمتى تقاضـا در تمامى گروههاى كالايى منفى بوده و در هيج يكك از گروهها، قانون تقاضا نقض نشده است．

كشش	ضريب خود قيمتى	ضر يب در آهى	ميانكين سهم كالاها	كروههاى كالايى
－－／ه人イレ	－／ITM	－－／．ryf	－MIV．	خوراك
－－910．	－．／．19f	－－／．VAV	－／reg	مسكن
－1／5．94	－－．／1rm	－／rya	－1．4rs	اتومبيل داخلى
－1／．r1＾	－•／．．．r	－1．．．9	\cdots－．．va	اتوميل خارجى
－．／9944	$\cdots \cdots v$	－．／．0．9	－／．ryt	حمل
－－，4grv	\cdots－$/$ 人f	$\cdots \cdots$	－／．ITY	سوخت
$-1 / 4 V Y$ ．	－$/ 八 . \Delta r$	\％／Av．	－14999	ساير كالاها

 كه قدر مطلق اين كشش نسبت بـه سـاير گرووههـاى كـالايى بيشتر اسـت، افـزايش قيمـت اتومبيل داخلى، بيشترين كاهش مصرف را نسبت به ساير گروهها خواهد داشت．

شده است．البته بايد توجه داشت كه طبقهبندى كالاها（ضرورى و لـو كس）در هـر الگـوى
بر اساس علامت ضريب مخارج واقعى (Bi) صورت مى گيرد.

با توجه به جدول بر آوردها، مشاهده مىشود كه خوراكك، مسكن و حمل و نقـل، جـزو
كالاهاى ضرورى هستند．نكته حائز اهميت در اين اعداد كشش درآمـدى اتومبيـل داخلـى
 اتومبيل خارجى و سوخت و هزينههاى تعميرات بزر گتر از ا است و بدين معنـى اسـت كـــ
اين گروْهماى كالايى، لو كس مىباشند.

نوع كالا	كشش در آهدى	ضريب در آمىى	ميانكين سهم كالاها	كروههاى كالايى
ضرورى	-/91ra	-./. YVF	-rıv.	خوراكي
ضرورى	-190r.	--/.VAV	-/rYar	مسكن
لو كس	1/DTOD	-1.rya	-1.4ra	اتومبيل داخلى
لو كس	1/1199	./...9	-/..Va	اتومبيل خارجى
ضرورى	-MVV9	$-6 / .49$	-/.YYY	حمل
لو كس	$1 /$ Y10	\cdots	-/.1ry	سوخت
لو كس	1/rrar	$\cdots \cdot \wedge v$.	-49999	ساير كالاها

در اين قسمت مىتوان با داشتن اطلاعات مربوط به كارايى، حاشئُ قيمت از هزينئ نهايى و ورئى همحچنين كشش قيمتى تقاضا نسبت به محاسبئ هزينهٔ رفاهى عملكرد غير رقابتى در صـنعت خودروسازى اقدام نمود. در اين خصوص، به منظور دقيق بودن نتـايج محاسـبات بـا لحـاظ اثرات ناكارامدى x در نظر گرفته مى شـود. بـدين منظور از رابطــُ زيـر بـراى محاسـبـه ايـن شاخص استفاده مىشو.
$W_{\text {Total }}=W_{a x}+W_{x}=\frac{1}{2} q_{m} p_{m} \eta\left(\frac{\left(p_{m}-c_{m}\right)+\left(1-\frac{\hat{u}_{c}^{\text {min }}}{\hat{u}_{c}^{b}}\right)}{p_{m}}\right)+\left(q_{m} \cdot\left(1-\frac{\hat{u}_{c}^{\text {min }}}{\hat{u}_{c}^{b}}\right)\right)$
در جدول ه نتايج محاسبات هزينهٔ رفاهى عملكـرد غير رقـابتى صـنعت خودرورسـازى بـا لحاظ اثرات ناكاراملى x به عنوان سهمى از توليد ناخالص داخلى نشان داده شده است. در مطالعأ حاضر با هدف تحليل آثار رفاهى عملكرد در صنعت خودروسـازى ايـران بـا
 و كومارون (1999) در كنار آثار رفاهى ناكارايى تخصيصى بر اهميت توجه بــه هزينـهـهاى ناشى از نا كارايى x نيز تأكيد شد. ضرورت اين بحث از آنجاست كه در اقتصـاد ايـران بـين صنايع كارخانهاى، صنعت خودروسازى بيشترين سهم را از ارزش افزوده برخوردار است.

نتايج محاسبئ هزينههاى اجتماعى عملكرد در صنعت خودروسازى با استفاده از رويكرد
 عملكرد x با لحاظ آثار رفاهى ناشى از نا كارايى تخصيص اين صنعت حدود ا/ الدرصـد از ارزش توليد ناخالص داخلى سال وی٪٪ بوده است.

7. نتيجه و پيشنهاد

شاخص ليبنشتاين و كومانور در خصوص رفاه از دست رفته ناشى از عملكرد غير رقابتى در
 رفاهى انحصار از توليد نا خالص داخلى رو به افزا ايش است. اين بدان معنى است كه بخشى
 انحصار گر مى گردد طى زمان در حال افزا ايش است و سهم آن نيز قابل توجه مىباشد. همانطور كه در مباحث قبل ذكر شد دو عامل مهـم اثر گـذار بـر هزينـههـاى اجتمـاعى انحصار در صنعت خودروى سوارى مربوط به كارايى x و كشش قيمتى تقاضاى خودروى سوارى در اين صنعت است. نتايج اين تخمين نشان مىدهد هر دو عامل فوق در طـول ايـن

مدت با وجود نوسانات زياد، روند كاهشى داشته و اثر كاهشى بر هزينههاى رفاهى انحصار داشتهاند. اين در حالى است كه در شاخص هزينهٔ رفاهى ليبنشتاين و كومانور مقدار توليد و همّحنين شاخص لرنر نيز تأثير مستقيمى بر اين شاخص دارد. شاخص مقدار توليد خودروى سوارى كه از متوسط وزنى توليد خودروى سوارى توليد شده توسط ؟ بنگاه خودروسـازى

 وضعيت رقابتى (شاخص لرنر) نيز يكى ديگر از عوامل تأثير گذار بر شاخص هزينـهُ رفـاهى ليبنشتاين و كومانور است كه در طى اين مدت روند افزايشـى داشـته و در نهايـت منجـر بـه افزايش سهم هزينههاى رفاهى انحصار از توليد نا خالص داخلى شده است. بر اين اساس با تو جه به شروع برنامههاى خصوصى سازى در كشور و همچچنـين تشـكيل شوراى رقابت مبنى بر نظارت ساختار بازارها در ايران، دولت بايستى سياستهايى را اتخـاذ كنند كه فضاى رقابتى بين بنگاههاى فعال اين صنعت را افزايش دهد تا از ايـن طريـق بتـوان به اهداف خصوصى سازى و آزادسازى كه همانا افزايش كارايى است، دست يافـت. يكىى از راهكارهاى افزايش رقابت در اين صنعت برنامهريزى بلندمدت جهـت كـاهش تــريدجى تعرفه واردات خودروهاى خارجى به كشور همزمان با نظارت بر كيفيت توليد خودروهاى توليد داخلى است تا علاوه بر مشخص بودن افق پيش رو فرصت كافى جهت برنامـهريـزى افزايش كيفيت و كارايى بنگاههاى خودروسازى در كشور فراهم گردد.

Estimation Method: Seemingly Unrelated Regression
Sample: 1376Q2 1390Q4
Included observations: 60
Total system (unbalanced) observations 352
Iterate coefficients after one-step weighting matrix
Convergence achieved after: 1 weight matrix, 43 total coef iterations

Prob.	t-Statistic	Std. Error	Coefficient	
0.0001	4.095042	0.250704	1.026644	$\mathrm{C}(10)$
0.0000	5.665664	0.021766	0.123319	$\mathrm{C}(11)$
0.6666	-0.431280	0.020430	-0.008811	$\mathrm{C}(12)$

برآورد هز ينههاى رفاهى انحصار در صنت خودروى ايران 118

0.0000	-4.457336	0.011724	-0.052256	$\mathrm{C}(13)$
0.8954	0.131592	0.001923	0.000253	$\mathrm{C}(14)$
0.0000	4.144082	0.028909	0.119802	$\mathrm{C}(15)$
0.2705	-1.103996	0.003453	-0.003812	$\mathrm{C}(16)$
0.0000	-6.640412	0.040307	-0.267654	$\mathrm{C}(17)$
0.0488	-1.978686	0.013863	-0.027430	$\mathrm{C}(18)$
0.0000	7.259325	0.073605	0.534326	$\mathrm{C}(19)$
0.0198	-2.341762	0.109973	-0.257530	$\mathrm{C}(111)$
0.0003	3.617498	0.434606	1.572185	$\mathrm{C}(20)$
0.7852	-0.272850	0.052877	-0.014427	$\mathrm{C}(22)$
0.6158	-0.502305	0.017661	-0.008871	$\mathrm{C}(23)$
0.0966	-1.666599	0.002400	-0.004000	$\mathrm{C}(24)$
0.8629	0.172851	0.006949	0.001201	$\mathrm{C}(25)$
0.1614	1.403739	0.016007	0.022470	$\mathrm{C}(26)$
0.8819	0.148673	0.071653	0.010653	$\mathrm{C}(27)$
0.0006	-3.474626	0.022660	-0.078734	$\mathrm{C}(28)$
0.2540	1.142947	0.114984	0.131421	$\mathrm{C}(29)$
0.0000	4.390684	0.111644	0.490194	$\mathrm{C}(222)$
0.1122	-1.593042	0.230521	-0.367230	$\mathrm{C}(30)$
0.0163	-2.415788	0.005104	-0.012331	$\mathrm{C}(33)$
0.0004	3.580509	0.001004	0.003597	$\mathrm{C}(34)$
0.9348	-0.081924	0.001895	-0.000155	$\mathrm{C}(35)$
0.0226	-2.291198	0.008053	-0.018450	$\mathrm{C}(36)$
0.0861	1.721856	0.013277	0.022861	$\mathrm{C}(38)$
0.0000	5.366922	0.085996	0.461533	$\mathrm{C}(39)$
0.5133	0.654563	0.104934	0.068686	$\mathrm{C}(333)$
0.8950	-0.132114	0.070653	-0.009334	$\mathrm{C}(40)$
0.7230	-0.354721	0.000692	-0.000246	$\mathrm{C}(44)$
0.6468	0.458625	0.000531	0.000244	$\mathrm{C}(45)$
0.1651	-1.391606	0.002434	-0.003388	$\mathrm{C}(46)$
0.8176	0.230869	0.004025	0.000929	$\mathrm{C}(48)$
0.5626	0.579695	0.107492	0.062312	$\mathrm{C}(49)$
0.8684	0.165823	0.108365	0.019969	$\mathrm{C}(444)$
0.1133	1.587985	0.060080	0.095407	$\mathrm{C}(50)$
0.3753	-0.887978	0.004793	-0.004256	$\mathrm{C}(51)$
0.9310	0.086654	0.008116	0.000703	$\mathrm{C}(55)$
0.9312	0.086441	0.003304	0.000286	$\mathrm{C}(56)$
0.1510	-1.439630	0.003424	-0.004929	$\mathrm{C}(58)$
0.0129	2.500454	0.236117	0.590399	$\mathrm{C}(59)$
0.412	0.822898	0.289575	0.238291	$\mathrm{C}(555)$
0.9334	0.083643	0.042262	0.003535	$\mathrm{C}(60)$
0.0786	-1.765103	0.005062	-0.008935	$\mathrm{C}(62)$
0.0063	-2.748800	0.001568	-0.004310	$\mathrm{C}(63)$

0.0338	2.131835	0.000362	0.000772	$\mathrm{C}(64)$
0.0173	2.393298	0.005446	0.013033	$\mathrm{C}(65)$
0.0001	3.841776	0.002189	0.008410	$\mathrm{C}(66)$
0.9067	0.117312	0.002425	0.000284	$\mathrm{C}(68)$
0.0005	3.524656	0.114166	0.402397	$\mathrm{C}(69)$
0.1104	1.601198	0.132241	0.211744	$\mathrm{C}(666)$

Equation:
$\mathrm{SKH}=\mathrm{C}(10)+\mathrm{C}(11) * \mathrm{LPKH}+\mathrm{C}(12) * \mathrm{LPMAS}+\mathrm{C}(13) * \mathrm{LPOTOD}+\mathrm{C}(14)$ *LPOTOKH $+\mathrm{C}(15) *$ LPHAML+C(16)*LPSUKH $+\mathrm{C}(17) *$ LPSAY $+\mathrm{C}(18)$
$* \mathrm{LMP}+\mathrm{C}(19) * \mathrm{SKH}(-4)+[\mathrm{AR}(2)=\mathrm{C}(111)]$
Observations: 58

0.313398	Mean dependent var	0.927962	R-squared
0.028778	S.D. dependent var	0.912635	Adjusted R-squared
0.003401	Sum squared resid	0.008506	S.E. of regression
		1.492037	Durbin-Watson stat

Equation:
SMAS $=\mathrm{C}(20)+\mathrm{C}(12) * \mathrm{LPKH}+\mathrm{C}(22) * \mathrm{LPMAS}+\mathrm{C}(23) * \mathrm{LPOTOD}+\mathrm{C}(24)$
*LPOTOKH $+\mathrm{C}(25) *$ LPHAML $+\mathrm{C}(26) *$ LPSUKH $+\mathrm{C}(27) *$ LPSAY $+\mathrm{C}(28)$
*LMP + C (29) *SMAS(-4) $+[\operatorname{AR}(1)=\mathrm{C}(222)]$

		Observations: 59	
0.223880	Mean dependent var	0.705622	R-squared
0.014957	S.D. dependent var	0.644294	Adjusted R-squared
0.003820	Sum squared resid	0.008921	S.E. of regression
		1.961013	Durbin-Watson stat

Equation:
$\mathrm{SOTOD}=\mathrm{C}(30)+\mathrm{C}(13) * \mathrm{LPKH}+\mathrm{C}(23) * \mathrm{LPMAS}+\mathrm{C}(33) * \mathrm{LPOTOD}$ $+\mathrm{C}(34) * \mathrm{LPOTOKH}+\mathrm{C}(35) * \mathrm{LPHAML}+\mathrm{C}(36)^{*}$ LPSUKH $+(-\mathrm{C}(13)-\mathrm{C}(23)$ $-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36))^{*} \mathrm{LPSAY}+\mathrm{C}(38)^{*} \mathrm{LMP}+\mathrm{C}(39)^{*} \mathrm{SOTOD}(-4)$
$+[\operatorname{AR}(2)=\mathrm{C}(333)]$
Observations: 58

0.045609	Mean dependent var	0.794940	R-squared
0.014318	S.D. dependent var	0.756491	Adjusted R-squared
0.002396	Sum squared resid	0.007065	S.E. of regression
		1.574393	Durbin-Watson stat

Equation:
SOTOKH $=\mathrm{C}(40)+\mathrm{C}(14) * \mathrm{LPKH}+\mathrm{C}(24) * \mathrm{LPMAS}+\mathrm{C}(34) *$ LPOTOD

$+\mathrm{C}(44) *$ LPOTOKH $+\mathrm{C}(45) *$ LPHAML $+\mathrm{C}(46) *$ LPSUKH $+(-\mathrm{C}(14)-\mathrm{C}(24)$
$-\mathrm{C}(34)-\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(46)) *$ LPSAY $+\mathrm{C}(48) *$ LMP $+\mathrm{C}(49) *$ SOTOKH (-4)
$+[\operatorname{AR}(1)=C(444)]$

		Observations: 59	
0.007442	Mean dependent var	0.569479	R-squared
0.002993	S.D. dependent var	0.490403	Adjusted R-squared
0.000224	Sum squared resid	0.002137	S.E. of regression
		1.866630	Durbin-Watson stat

Equation:
SHAML $=\mathrm{C}(50)+\mathrm{C}(51) * \mathrm{LPKH}+\mathrm{C}(25) *$ LPMAS $+\mathrm{C}(35) *$ LPOTOD
$+\mathrm{C}(45) *$ LPOTOKH + C(55)*LPHAML + C(56)*LPSUKH $+(-\mathrm{C}(51)-\mathrm{C}(25)$ $-\mathrm{C}(35)-\mathrm{C}(45)-\mathrm{C}(55)-\mathrm{C}(56)) *$ LPSAY $+\mathrm{C}(58) *$ LMP $+\mathrm{C}(59) * S H A M L(-4)$
$+[\operatorname{AR}(1)=C(555)]$
Observations: 59

0.022186	Mean dependent var	0.511888	R-squared
0.000905	S.D. dependent var	0.422234	Adjusted R-squared
$2.32 \mathrm{E}-05$	Sum squared resid	0.000688	S.E. of regression
		2.147519	Durbin-Watson stat

Equation:
SSUKH $=\mathrm{C}(60)+\mathrm{C}(16) * \mathrm{LPKH}+\mathrm{C}(62) *$ LPMAS $+\mathrm{C}(63) *$ LPOTOD
$+\mathrm{C}(64) *$ LPOTOKH + C(65)*LPHAML+C(66)*LPSUKH $+(-\mathrm{C}(16)-\mathrm{C}(62)$
$-\mathrm{C}(63)-\mathrm{C}(64)-\mathrm{C}(65)-\mathrm{C}(66))^{*} \mathrm{LPSAY}+\mathrm{C}(68) *$ LMP $+\mathrm{C}(69) * \operatorname{SSUKH}(-4)$
$+[\operatorname{AR}(1)=C(666)]$

		Observations: 59	
0.013520	Mean dependent var	0.943129	R-squared
0.004018	S.D. dependent var	0.932684	Adjusted R-squared
$5.33 \mathrm{E}-05$	Sum squared resid	0.001043	S.E. of regression
		1.763339	Durbin-Watson stat

$$
\begin{aligned}
& \text { Y. Yنابع }
\end{aligned}
$$

> پپ夫وهش هاى بازر گانى.
> خداداد كاشى، فرهاد (• (N1) ، "بـر آورد هزينههـاى اجتمـاعى انحصـار در بخـش صـنعت

$$
\begin{aligned}
& \text { و پثزوهشهاى بازر گانى. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { رويكرد ناكارايى تخصيصى و ناكارايى x "، فصـنامئ تحتيقـات مـالد مسازى /قتصـادى، }
\end{aligned}
$$

$$
\begin{aligned}
& \text { فيوضى اختيارى، نسيم (هیזا)، "بر آورد هزينهُ رفاهى ناشى از انحصار مؤثر در صنعت بيمه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مخابرات/يران، پاياننامه دكترى به راهنمايى د كتر عبـاس معمـارنزاد ،دانشـغاه علـوم و } \\
& \text { تحقيقات. }
\end{aligned}
$$

Battese, G. E., and T J. Coelli, (1992), "Frontier Production Functions, TechnicalEfficiency and Panel Data: With Application to Paddy Farmers in India", Journal of Productivity Analysis 3 (1-2), 153-169.
Battese, G.E. \& Coelli, T.J. (1995), "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data", Empirical Economics, vol. 20, pp. 325-332.
Baysinger, B. and Tollison, R. (1980), "Evaluation the Social Costs of Monopoly and Regulation", Atlantic Economic Journal, 8, 22 - 26.
Berger, A. N. and Mester, L. J. (1997), "Inside the Black Box: What Explains Differences in the Efficiencies of Financial Institutions?" Journal of Banking and Finance, 21, pp. 895-947.
Choi Jeong Pyo (1988), "Welfare Loss due to Monopoly Power in Korean Manufacturing", The Konkuk Journal of Business and Economic Studies 13.

Christensen R Laurits. Greene H.William (1976) "Economies of Scale in U.S. Electric Power Generation", The Journal of Political Economy, Vol. 84, No. 4
Christensen, L. R., R. Jorgenson, and L. Lau. (1973). "Transcendental Logarithmic Utility Functions", American Economic Review, vol. 65, pp. 367-383.
Cowling, Keith and Mueller D.C. (1978) "The Social Costs of Monopoly Power", The Economic Journal, 88, 727-748.
Cowling, Keith. Mueller.Dennis C, (1978). "The Social Costs of Monopoly Power", Blackwell Publishing for the Royal Economic Society, The

Economic Journal, Vol. 88, No. 352.

Harberger ,A,C.(1971)."Three Basic Postulates for Applied welfare Economics: An interprative Essay", Journal of Economic Literature, Vol 9, No 3.
Kamerschen, D.R. (1996). "An Estimation of Welfare Losses from Monopoly in the American Economy", Western Economic Journal, Pp 221-236
Kumbhakar, S., (1988). Estimation of Input Spearfish, Technical and Allocative Inefficiency in Stochastic Frontier Models, Oxford Economic Papers, 40, 335.
Leibenstein, Harvey (1966). "Allocative Efficiency vs. X-Efficiency". American Economic Review. Vol. 56, No. 3. Pp. 392-415.
Leibenstein, Harvey and William S. Comanor (1969): Allocative Efficiency, XEfficiency and the Measurement of Welfare Losses. Economica, New Series, Vol.36, No. 143, P.p. 304-309.
Molyneux, Philip; Yener Altunbas and Edward Gradener (1996), "Efficiency in European Banking". John Wiley and Sons, England, first published.
Posner, R. A. (1975). "The Social Costs of Monopoly and Regulation." Journal of Political Economy, vol. 83 (August).
Posner, Richard. A. (1975). "The Social Cost of Monopoly and Regulation", Journal of Political Economy, 83 (4), 807 - 827.
Solis, Liliana. Maudos, Joaquín (2008). "The social costs of bank market power: Evidence from Mexico", The Journal of Comparative Economics, Vol. 36, pp. 467-488.
Tullock, G. (1967). "The Welfare Costs of Tariffs, Monopolies, and Theft", Western Economic Journal 5, 224 - 32.

[^0]: 1．Seemingly Unrelated Regression（SUR）

[^1]: 1. Iterative Zellner Estimation (IZE)
