بررسی سرریز نوسان و بازدهی بین بازارهای فرامرزی (فارکس و رمزارزها) و بازار سهام در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه اقتصاد دانشکده علوم اقتصادی و اداری دانشگاه مازندران، بابلسر، ایران

2 کارشناس‌ارشد گروه اقتصاد دانشکده علوم اقتصادی و اداری دانشگاه مازندران، بابلسر، ایران

10.48308/jem.2024.234768.1896

چکیده

گسترش تکنولوژی و توسعه هر چه بیشتر بازارهای مالی جهانی، بازارهای فرامرزی (فارکس و رمزارزها) را  به یکی از بازارهای مورد توجه سرمایه‌گذاران و معامله گران در ایران تبدیل کرده است. با توجه به اقبال روزافزون سرمایه‌گذاران و معامله گران به بازارهای فرامرزی، در این پژوهش به بررسی ارتباط بین این بازارها و بازار سهام و سرریز نوسانات و بازدهی بین آنها در ایران طی دوره زمانی بهمن ماه 1397 تا اسفند 1401 با استفاده از داده‌های روزانه و روش ای-گارچ پرداخته شده است. نتایج حاکی از این است که بازارهای فارکس، رمزارزها و سهام، متقارن، حساس به بحران و تحت تأثیر اخبار بد قرار دارند ولی بازار ارز (دلار آمریکا)، نامتقارن و تحت تأثیر اخبار خوب قرار دارد. بر اساس نتایج، بازارهای فارکس، رمزارزها و ارز با بازار سهام دارای همبستگی هستند و رشد یک بازار، رشد بازار دیگر را در پی خواهد داشت. نتایج حاصل از بررسی سرریز بازدهی‌ها و نوسانات بین بازارها بر اساس دو شاخص دایبلود-یلماز و بارنیک و کرهلیک، نشان‌دهنده تأیید سرریز بازدهی‌ها و نوسانات از بازارهای فارکس، رمزارزها و بازار ارز به بازار سهام طی دوره مورد بررسی است. همچنین، بازار سهام تهران بزرگ‌ترین گیرنده سرریز بازدهی و نوسان و بازار رمزارزها نیز کوچک‌ترین گیرنده سرریز نوسان هستند. نتایج حاصل از سرریز فرکانسی بر اساس شاخص بارنیک و کرهلیک، نیز حاکی از این‌است که بازار فارکس بزرگترین فرستنده سرریز بازدهی و بازار ارز بزرگترین فرستنده سرریز نوسان به بازار سهام هستند. نتایج برآوردی حاصل از تخمین این شاخص به غالب بودن سرریز بازدهی‌ از بازارهای مورد مطالعه به بازار سهام در کوتاه‌مدت اشاره دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation the Spillover of Volatility and Return Between Cross-Border Markets (Forex and Cryptocurrencies) and Stock Market in Iran

نویسندگان [English]

  • Majid Aghaei 1
  • Mahdieh Rezagholizadeh 1
  • Samira Chawshany 2
1 Associate Professor of Economics, Faculty of Economics and Administrative Sciences, University of Mazandaran, Babolsar, Iran
2 MA in Economics, Faculty of Economics and Administrative Sciences, University of Mazandaran, Babolsar, Iran
چکیده [English]

The expansion of technology and the increasing development of global financial markets have transformed cross-border markets (Forex and cryptocurrencies) into one of the preferred markets for investors and traders in Iran. Given the growing interest of investors and traders in cross-border markets, this study examines the relationship between these markets and the stock market, as well as the spillovers of volatility and return among them in Iran during the period from February 2019 to March 2023 using daily data and the DCC-AR-EGARCH method. The results indicate that Forex, cryptocurrencies, and the Tehran Stock Exchange are symmetric, sensitive to crises, and affected by negative news, while the currency market (US dollar) is asymmetric and influenced by positive news. Also, Forex, cryptocurrencies, and currency markets have a correlation with the Tehran stock exchange, suggesting that the growth of one market leads to the growth of another. The results of investigating spillovers of return and volatility between markets under study based on the Diebold & Yilmaz and Barunik & Krehlik indices indicate that there is a spillover of return and volatility from the Forex, cryptocurrency, and currency markets to the Tehran stock exchange during the period under study. The Tehran stock exchange market is the largest return and volatility spillover recipient, while the cryptocurrency market is the smallest recipient of volatility spillover. The results of the Barunik & Krehlik frequency spillover index also suggest that the Forex market is the largest sender of return spillover, and the currency market is the largest sender of volatility spillover to the stock market in Iran. The estimated results of this index indicate the predominance of return spillover from the markets under study to the Tehran stock exchange in the short term.

کلیدواژه‌ها [English]

  • Forex
  • Cryptocurrencies
  • Bitcoin
  • Euro/Dollar
  • Cross-Border Markets
  • Stock Market
  • DCC-AR-EGARCH
  • Bakas, D., & Triantafyllou, A. (2018). The impact of uncertainty shocks on the volatility of commodity prices. Journal of International Money and Finance, 87, 96-111.
  • Bhanja, N., Ahmad Shah, A., & Dar, A. B. (2023). Aggregate, asymmetric and frequency-based spillover among equity, precious metals, and cryptocurrency. Resources Policy, 80, 103145.
  • Bonal, A. D., & López, Á. G. (2021). Quantifying the randomness of the forex market. Physica A: Statistical Mechanics and its Applications, 569, 125770.
  • Botshekan, M. H., Sadeghi Shahdani, M., & Mohseni, H. (2018). Modeling Volatility Spillovers in Iran Capital Market. International Journal of Finance and Managerial Accounting, 3(10) (In Persian).
  • Brauneis, A., & Mestel, R. (2018). Cryptocurrency-portfolios in a mean-variance framework. Finance Research Letters.
  • Briere, M., Oosterlinck, K., & Szafarz, A. (2015). Virtual currency, tangible return: Portfolio diversification with bitcoin. Journal of Asset Management, 16(6), 365-373.
  • Das, S. (2008). An Empirical Study of the Impact of US Stock and Currency Market on the Stock and Currency Markets of India, Japan, Malaysia and Singapore. International Management Institute (IMI) New Delhi, India.
  • Dornbusch, R., & Fischer, S. (1980). Exchange Rates and the Current Account. The American Economic Review, 70(5), 960-971.
  • Fengler, M. R., & Gisler, K. I. (2015). A variance spillover analysis without covariances: what do we miss? Journal of International Money and Finance, 51, 174-95.
  • Frankel, J. A. (1983). Monetary and Portfolio-Balance Models of Exchange Rate Determination. In J. S. Bhandari & B. H. Putnam (Eds.), Economic Interdependence and Flexible Exchange Rates (pp. 960-971). MIT Press.
  • Kavussanos, I., Manolis, I., Visvikis, D., & Dimitrakopoulos, D. (2014). Economic spillovers between related derivatives markets: The case of commodity and freight markets. Transportation Research Part E: Logistics and Transportation Review, 68, 79-102.
  • Gholami, A., & Salami, E. (2021). Volatility Spillover of the Exchange Rate and the Global Economy on Iran Stock Market. Journal of Money and Economy, 15(3),
  • Gil-Alana, L. A., Abakah, E. J. A., & Romero Rojo, M. F. (2020). Cryptocurrencies and stock market indices. Are they related? Research in International Business.
  • Hung, N., & Vo, X. V. (2021). Directional spillover effects and time-frequency nexus between oil, gold and stock markets: evidence from pre and during COVID-19 outbreak. International Review of Financial Analysis, 76, 101730.
  • Juszczuk, P., & KruS, L. (2020). Soft multicriteria computing supporting decisions on the Forex market. Applied Soft Computing, 96, 106654.
  • Kang, S. H., Tiwari, A. K., Albulescu, C., & Yoon, S. M. (2019). Exploring the time-frequency connectedness and network among crude oil and agriculture commodities V1. Energy Economics, 84,
  • Khatami, S.K., Khodai Valehzadqord, M. & Abdollahi Keyvani, S.M. (2023). Investigating the impact of cryptocurrencies on the stock market using the meta-analysis method. Scientific Publications Management System. 17(63), 390-375 (In Persian).
  • Kumah, S., & Odei-Mensa, J. (2021). Are Cryptocurrencies and African stock markets integrated? The Quarterly Review of Economics and Finance.
  • Mehta, G. (2010). Relationship between Stock Market and Foreign Exchange Market in India. University of Delhi - Department of Business Economics.
  • Mensi, W., Al-Yahyaee, K. H., Al-Jarrah, I. M., Vo, X. V., & Kang, S. H. (2021). Does volatility connectedness across major cryptocurrencies behave the same at different frequencies? A portfolio risk analysis. International Review of Economics and Finance.
  • Mensi, W., Hammoudeh, S., Reboredo, J. C., & Nguyen, D. K. (2014). Do global factors impact BRICS stock markets? A quantile regression approach. Emerging Markets Review, 19, 1-17.
  • Milunovich, G. (2018). Cryptocurrencies, Mainstream Asset Classes and Risk Factors – A Study of Connectedness. Faculty of Business and Economics.
  • Milunovich, G. (2019). Cryptocurrencies, Mainstream Asset Classes and Risk Factors – A Study of Connectedness. Macquarie University.
  • Nekhili, R., Mensi, W., & Vo, X. V. (2021). Multiscale spillovers and connectedness between gold, copper, oil, wheat and currency markets. Resources Policy.
  • Nekhili, R., Sultan, J., & Bouri, E. (2023). Liquidity spillovers between cryptocurrency and foreign exchange markets. The North American Journal of Economics and Finance, 68.
  • Olaiwola, S., Oluwasegun, J., & Benjamin, O. (2020). The Effect of Cryptocurrency Returns Volatility on Stock Prices and Exchange Rate Returns Volatility in Nigeria. ACTA UNIVERSITATIS DANUBIUS, 16(3).
  • Ozturk, S. S. (2020). Dynamic Connectedness between Bitcoin, Gold, and Crude Oil Volatilities and Returns. Risk and Financial Management.
  • Samavi, M.E, Nikoomaram, H., Madanchi Zaj, M. & Yaghobnezahd, A. (2022). Modeling and Forecasting Distribution of Return on the Tehran Stock Exchange Index and Bitcoin with the GAS Time Variable Method. Financial Knowledge of Securities Analysis, 15(4), 1-14 (In Persian).
  • Sami, M., & Abdallah, W. (2020). Cryptocurrency and stock market: Complements or substitutes? Evidence from gulf countries. Applied Finance Letters, 9, 25–35.
  • Shinagawa, Y. (2014). Determinants of Financial Market Spillovers: The Role of Portfolio Diversification, Trade, Home Bias, and Concentration. IMF Working Paper. Statistics Department.
  • Virk, N. (2021). Bitcoin and integration patterns in the forex market. Finance Research Letters.
  • Wang, H., Wang, X., Yin, S., & Ji, H. (2021). The asymmetric contagion effect between stock market and cryptocurrency market. Finance Research Letters.