شبیه‌سازی تحلیل پویای تعامل بازارهای کربن و برق در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه اقتصاد دانشکده مدیریت و اقتصاد دانشگاه شهید باهنر کرمان، کرمان، ایران

2 دانشیار گروه اقتصاد دانشکده مدیریت و اقتصاد دانشگاه شهید باهنر کرمان، کرمان، ایران

3 استاد گروه اقتصاد دانشکده مدیریت و اقتصاد دانشگاه شهید باهنر کرمان، کرمان، ایران

4 دانشیار گروه مدیریت دانشکده علوم اداری و اقتصاد دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

به دلیل سهم به شدت بالای سوخت‌های فسیلی در سبد سوخت برق تولیدی نیروگاه‌های ایران، مدیریت آلودگی در بخش نیروگاهی ضروری است. این مقاله با توجه به اهمیت انتشار کربن، رابطه میان جفت بازارهای کربن و برق را به شکلی پویا بررسی کرده و سناریوهایی را در جهت تحلیل تعامل این جفت بازار مورد بررسی قرار داده است. نوآوری مقاله در تحلیل پویای تعامل جفت بازارهای کربن و برق در ایران، با تمرکز بر شرایط خاص کشور و استفاده از سناریوهای مختلف، است. تحلیل سناریوهای شبیه‌سازی‌شده نشان می‌دهد که بازارهای کربن و برق در ایران به‌طور عمیقی به یکدیگر وابسته‌اند و عواملی مانند قیمت گاز، مالیات کربن، ضریب انتشار و تقاضای برق بر هر دو بازار تأثیر متقابل دارند. افزایش قیمت گاز یا مالیات کربن هزینه‌های تولید برق را بالا برده و در نتیجه قیمت برق و تقاضا برای سهمیه‌های کربن را افزایش می‌دهد، که این امر به کارایی بیشتر بازار کربن در کاهش انتشار کمک می‌کند. از سوی دیگر، رشد تقاضای برق و ضریب انتشار، فشار بیشتری بر بازار کربن وارد کرده و نیاز به سرمایه‌گذاری در انرژی‌های پاک و فناوری‌های کاهش انتشار را برجسته می‌سازد. برای تحقق اهداف کاهش انتشار و پایداری، مجموعه‌ای از سیاست‌های هم‌افزا شامل ترویج انرژی‌های تجدیدپذیر، اصلاح قیمت‌گذاری برق، حذف یارانه‌های سوخت فسیلی، تقویت بازار کربن و مدیریت تقاضا پیشنهاد می‌شود که می‌تواند منجر به کاهش وابستگی به منابع فسیلی و توسعه برق پایدار شود.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Dynamic Analysis of the Interaction between the Carbon and Electricity Markets in Iran

نویسندگان [English]

  • Hakimeh Aramesh 1
  • Zeinolabedin Sadeghi 2
  • Seyyed Abdul Majid Jalaee 3
  • Salim Karimi Takalo 4
1 PhD Candidate in Economics, Faculty of Management and Economics, Shahid Bahonar University of Kerman, Kerman, Iran
2 Associate Professor of Economics, Faculty of Management and Economics, Shahid Bahonar University of Kerman, Kerman, Iran
3 Professor of Economics, Faculty of Management and Economics, Shahid Bahonar University of Kerman, Kerman, Iran
4 Associate Professor of Management, Faculty of Administrative Sciences and Economics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
چکیده [English]

Given the significant reliance on fossil fuels in Iran's power plants for electricity generation, managing pollution within the power sector has become crucial for the country. This paper addresses the importance of carbon emissions by dynamically examining the relationship between carbon and electricity markets. The novelty of this research lies in its dynamic analysis of the interplay between carbon and electricity markets in Iran, considering the country's unique circumstances and employing different scenarios. The findings reveal a deep interdependence between Iran's carbon and electricity markets. Factors such as gas prices, carbon taxes, emission coefficients, and electricity demand exert mutual influence on both markets. An increase in gas prices or the implementation of a carbon tax raises electricity production costs, consequently driving up electricity prices and the demand for carbon allowances. This, in turn, enhances the effectiveness of the carbon market in reducing emissions. Conversely, growth in electricity demand and the emission coefficient place greater pressure on the carbon market, underscoring the necessity for investments in clean energy and emission reduction technologies. To achieve emission reduction targets and promote sustainability, a set of synergistic policies is proposed. These include promoting renewable energy sources, reforming electricity pricing mechanisms, phasing out fossil fuel subsidies, strengthening the carbon market, and implementing demand-side management strategies.

کلیدواژه‌ها [English]

  • Carbon Trading
  • Grandfathering Allocation
  • Electricity Market Reform
  • Dynamic Simulation
- Best, R., Burke, P. J., & Jotzo, F. (2020). Carbon pricing efficacy: Cross-country evidence. Environmental and Resource Economics, 77(1), 69–94. https://doi.org/10.1007/s10640-020-00436-x
- BP. (2024). Statistical review of world energy 2023. https://www.bp.com/ en/global/corporate/energy-economics/statistical-review-of-world-energy.html
- Brouwers, R., Schoubben, F., & Van Hulle, C. (2018). The influence of carbon cost pass through on the link between carbon emission and corporate financial performance in the context of the European Union Emission Trading Scheme. Business Strategy and the Environment, 27(8), 1422–1436. https://doi.org/10.1002/bse.2199
- Brown, D.P., Eckert, A., & Eckert, H. (2018). Carbon pricing with an output subsidy under imperfect competition: The case of Alberta's restructured electricity market. Resource and Energy Economics, 52, 102–123. https://doi.org/10.1016/j.reseneeco.2017.11.002
- Chu, W., Fan, L., & Zhou, P. (2025). Examining the interactions of carbon, electricity, and natural gas markets. Frontiers of Engineering Management, https://doi.org/10.1007/s42524-025-4077-3
- Du, Q., Yang, M., Wang, Y., Wang, X., & Dong, Y. (2024). Dynamic simulation for carbon emission reduction effects of the prefabricated building supply chain under environmental policies. Sustainable Cities and Society, 100, 105027. https://doi.org/10.1016/j.scs.2023.105027
- Forrester, J. W. (1958). Industrial dynamics: A major breakthrough for decision makers. Harvard Business Review, 36(4), 37–66.
- Guo, B. W., & Giorgio, C. G. (2021). Cost pass-through in the British wholesale electricity market. Energy Economics, 102, 105497. https://doi.org/10.1016/j.eneco.2021.105497
- IEA. (2023). World Energy Outlook 2023. International Energy Agency. https://www.iea.org/reports/world-energy-outlook-2023
- Johanna, C., Sander, D. B., Katja, S., & Robert, V. (2020). Ex-post investigation of cost pass-through in the EU ETS - An analysis for six industry sectors. Energy Economics, 91, 104883. https://doi.org/10.1016/ j.eneco.2020.104883
- Li, Y., Feng, T. T., Liu, L. L., & Zhang, M. X. (2023). How do the electricity market and carbon market interact and achieve integrated development? A bibliometric-based review. Energy, 265, 126308. https://doi.org/10.1016/j.energy.2023.126308
- Liu, X., & Jin, Z. (2020). An analysis of the interactions between electricity, fossil fuel and carbon market prices in Guangdong, China. Energy for Sustainable Development, 55, 82–94. https://doi.org/10.1016/ j.esd.2020.01.004
- Lu, Y., Xiang, J., Geng, P., Zhang, H., Liu, L., Wang, H., & Feng, T. (2023). Coupling mechanism and synergic development of carbon market and electricity market in the region of Beijing–Tianjin–Hebei. Energies, 16(4), 1726. https://doi.org/10.3390/en16041726
- Ma, J., & Kuo, J. (2021). Environmental self‐regulation for sustainable development: Can internal carbon pricing enhance financial performance? Business Strategy and the Environment, 30(8), 3517–3527. https://doi.org/10.1002/bse.2806
- Qi, S., & Cheng, S. (2018). China’s national emissions trading scheme: Integrating cap, coverage and allocation. Climate Policy, 18(sup1), 45–59. https://doi.org/10.1080/14693062.2018.1454587
- Shi, M., Zou, T., Xu, J., & Wang, J. (2022). Can Carbon Emissions Trading Scheme Make Power Plants Greener? Firm-Level Evidence from China. Frontiers in Energy Research, 10, 700. https://doi.org/10.3389/ fenrg.2022.912283
- Tvinnereim, E., & Mehling, M. (2018). Carbon pricing and deep decarbonization. Energy Policy, 121, 185–189.
- Wang, L., Yang, C., Xu, Z., Yuan, G., Tang, L., Bai, Y., & Wang, X. (2024). Analysis of carbon electricity coupled market modeling method based on carbon credit trading mechanism. International Journal of Electrical Power & Energy Systems, 156, 109707.
- World Bank. (2023). State and trends of carbon pricing 2023. https://hdl.handle.net/10986/39796
- Xu, S., & Xu, Q. (2024). Impacts of carbon emissions allowance limitations on carbon price with power generation rights trading in China. Journal of Cleaner Production, 470, 143312. https://doi.org/10.1016/ j.jclepro.2024.143312
- Yu, S., Chen, Y., Pu, L., & Chen, Z. (2022). The CO₂ cost pass-through and environmental effectiveness in emission trading schemes. Energy, 239, 122257. https://doi.org/10.1016/j.energy.2021.122257
- Zhang, R., Lu, Z., Shahidehpour, M., Li, Z., & Yan, L. (2024). Deciphering the electricity–carbon market nexus: Challenges and prospects of electricity–carbon coupling. Energy Internet, 1, 34–51. https://doi.org/ 10.1049/ein2.12003
- Zou, H., & Zhong, M.R. (2022). Factor reallocation and cost pass-through under the carbon emission trading policy: Evidence from Chinese metal industrial chain. Journal of Environmental Management, 313, 114924. https://doi.org/10.1016/j.jenvman.2022.114924.