بررسی اثرات سرریز تقاضای وسایل حمل و نقل عمومی درون‌شهری در کلان‌شهر تهران: الگوی خودرگرسیون برداری جامع

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد شهری و منطقه‌ای دانشکده اقتصاد و علوم اجتماعی دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشیار گروه اقتصاد دانشکده اقتصاد و علوم اجتماعی دانشگاه شهید چمران اهواز، اهواز، ایران

3 استاد گروه اقتصاد دانشکده اقتصاد و علوم اجتماعی دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

واکنش تقاضای حمل و نقل عمومی درون‌شهری به انواع تکانه‌های داخلی و خارجی از مهم‌ترین مسائل در سیاست‌گذاری حمل و نقل عمومی درون‌شهری است. هدف این پژوهش بررسی اثرات سرریز تقاضای وسایل حمل و نقل عمومی درون‌شهری در کلان‌شهر تهران با استفاده از الگوی خودرگرسیون برداری جامع طی دوره زمانی ماهانه 1398-1387 است. نتایج توابع ضربه-واکنش نشان می‌دهد که وقوع تکانه مثبت در تقاضای مترو، تقاضای اتوبوس تندرو را افزایش و تقاضای اتوبوس عادی را کاهش، تکانه مثبت در تقاضای اتوبوس عادی، تقاضای مترو و اتوبوس تندرو را کاهش و وقوع تکانه مثبت در تقاضای اتوبوس تندرو، به افزایش تقاضای مترو و کاهش تقاضای اتوبوس عادی می‌انجامد. همچنین وقوع تکانه مثبت در کرایه مترو، تقاضای اتوبوس عادی و تندرو را کاهش داده و وقوع تکانه مثبت در کرایه اتوبوس عادی، افزایش تقاضای مترو و اتوبوس تندرو را به‌دنبال دارد. با وقوع تکانه مثبت در کرایه اتوبوس تندرو، تقاضای مترو افزایش و تقاضای اتوبوس عادی و تندرو با شیب کم افزایش می‌یابد. در نهایت با وقوع تکانه مثبت در قیمت بنزین، تقاضای مترو، اتوبوس عادی و تندرو افزایش خواهد یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Spillover Effects of Urban Public Transport Vehicles in Tehran Megacity: Global Vector Autoregressive Approach

نویسندگان [English]

  • Mahboobeh Shojaeian 1
  • Masoud Khodapanah 2
  • Mansour Zarra-Nezhad 3
1 Ph.D Candidate in Urban and Regional Economics, Faculty of Economics and Social Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Associate Professor of Economics, Faculty of Economics and Social Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Professor of Economics, Faculty of Economics and Social Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Urban public transport demand response to various internal and external shocks is one of the most important issues in urban public transport policymaking. The purpose of this study is to investigate the spillover effects of demand for urban public transportation in Tehran megacity using global vector autoregressive approach during 2008-2019. The results of the impulse response function indicates that the occurrence of a positive shock in metro demand increases the demand for BRT and decreases the demand for bus, and a positive shock in bus demand declines the demand for metro as well as BRT, and a positive shock in BRT demand leads to the increase of metro demand and reduction of demand for common bus. Besides, a positive shock in metro fares decreases the demand for both BRT and common bus while a positive shock in bus fares increases the demand for metro and BRT. When a positive shock occurs in BRT fares the demand for metro increases while the demand for bus and BRT increases gradually. Also, a positive shock in gasoline price leads to the increase of demand for all three types of public transport modes.

کلیدواژه‌ها [English]

  • Spillover Effects
  • Public Transportation Demand
  • Tehran Megacity
  • Global Vector Autoregressive Approach
- Fujisaki, K. (2014). An empirical analysis of effects of gasoline price change on transportation behavior in Japan, with consideration of regional differences. Socio-Economic Planning Sciences, 48(3), 220-233.
- Ansari, A. & Ashnaei, H. (2016). Investigating of the economic and social impacts on public transport demand using dynamic systems modeling, second basic rail urban planning conference, Tehran (In Persian).
- Block-Schachter D. (2009). The myth of the single mode man: how the mobility pass better meets actual travel demand. Master’s Thesis, Massachusetts Institute of Technology.
- Bresson, G., Dargay, J., Madre, J.-L., Pirotte, A., (2004). Economic and structural determinants of the demand for public transport: an analysis on a panel of French urban areas using shrinkage estimators. Transportation Research Part, A 38, 269–285.
- Chao, M. C., Huang, W. H., & Jou, R. C. (2015). The asymmetric effects of gasoline prices on public transportation use in Taiwan. Transportation Research Part D: Transport and Environment41, 75-87.
- Chlond, B. (2012). Making people independent from the car-multimodality as a strategic concept to reduce CO2- emissions. In: Zachariadis, T. (ed.) Cars and Carbon: Automobiles and European Climate Policy in a Global Context, 269–293. Springer, New York.
- Chudik, A., & Pesaran, M. H. (2011). Infinite-dimensional VARs and factor models. Journal of Econometrics, 163(1), 4-22.
- Cordera, R., Canales, C., dell’Olio, L., & Ibeas, A. (2015). Public transport demand elasticities during the recessionary phases of economic cycles. Transport Policy42, 173-179.
- Crotte, A., Graham, D. J. & Anderson, R. J. (2009). A dynamic panel analysis of urban metro demand. Transportation Research Part E: Logistics and Transportation Review45(5), 787-794.
- Cugurullo, F., Acheampong, R. A., Gueriau, M., & Dusparic, I. (2020). The transition to autonomous cars, the redesign of cities and the future of urban sustainability. Urban Geography, 42, 1-27.
- Dargay, J. M., & Hanly, M. (2002). The demand for local bus services in England. Journal of Transport Economics and Policy (JTEP)36(1), 73-91.
- De Oña, J. (2021). Understanding the mediator role of satisfaction in public transport: A cross-country analysis. Transport Policy, 100, 129-149.
- Deputy of Transportation of Tehran Municipality (2020). Tehran public transport fleet on the verge of collapse, news date 16 December 2020, Iranian Students News Agency (ISNA), news code: 99092620133 (In Persian).
- Dezhpasand, F. & Khazaei, A. (2018). Estimation of income and price elasticities affecting the demand for gasoline in transportation sector. Journal of Economics and Modelling, 9(1), 117-142.
- Efthymiou, D., & Antoniou, C. (2017). Understanding the effects of economic crisis on public transport users’ satisfaction and demand. Transport Policy, 53, 89-97.
- Firoozfar, K. & Keimanesh, M. (2020). Investigation of providing optimal travel demand algorithm in public transport using neural network. Master Thesis. Civil Engineering - Road and Transportation. Payame Noor University of Hormozgan Province, Payame Noor International Kish Center (In Persian).
- Gogola, D.I.M., Sitanyiová,D.M.D., Černický, Ľ., & Veterník, M. (2018). New Demand Patterns for Public Transport due to demographic Change. 1(2), 248-267.
- Harbo, I., Johansen, S., Nielsen, B., & Rahbek, A. (1998). Asymptotic inference on cointegrating rank in partial systems. Journal of business & economic statistics16(4), 388-399.
- Hatami, A. (2020). Prioritize transportation demand management (TDM) policies in Tehran metropolis using Analytic Hierarchy Process (AHP). Road Scientific Quarterly, 28(104), 35-50 (In Persian).
- Hörcher, D., & Tirachini, A. (2021). A review of public transport economics. Economics of Transportation, 25, 100196.
- Iran Energy Balance (2015). Deputy Minister of Electricity and Energy, Office of Planning and Macroeconomics of Electricity and Energy (In Persian).
- Jansson, K., Andreasson, I., & Kottenhoff, K. (2016). Public Transport in the era of ITS: Forms of Public Transport. In Modelling Public Transport Passenger Flows in the Era of Intelligent Transport Systems (pp. 29-83). Springer, Cham.
- Jin, Z., Schmöcker, J. D., & Maadi, S. (2019). On the interaction between public transport demand, service quality and fare for social welfare optimisation. Research in Transportation Economics, 76, 100732.
- Johansen, S. (1992). Testing weak exogeneity and the order of cointegration in UK money demand data. Journal of Policy modeling14(3), 313-334.
- Konečný, V., & Brídziková, M. (2020). The Impact of the State of Emergency on the Supply of Services and Passenger Demand for Public Transport. LOGI–Scientific Journal on Transport and Logistics, 11(2), 56-67.
- Konstantakis, K. N., & Michaelides, P. G. (2014). Transmission of the debt crisis: From EU15 to USA or vice versa? A GVAR approach. Journal of Economics and Business, 76, 115-132.
- Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of econometrics, 74(1), 119-147.
- Li, H., Ma, X., Zhang, X., Li, X., & Xu, W. (2020). Measuring the Spatial Spillover Effects of Multimodel Transit System in Beijing: A Structural Spatial Vector Autoregressive Approach. Journal of Advanced Transportation, 1, 1-10.
- Litman, T. (2004). Transit price elasticities and cross-elasticities. Journal of Public Transportation7(2), 3. 
- Mattson, J.W. (2008). Effects of rising gas prices on bus ridership for small urban and rural transit systems. Fargo: Upper Great Plains Transportation Institute, North Dakota State University.
- Michaelides, P. G., Konstantakis, K. N., Milioti, C., & Karlaftis, M. G. (2015). Modelling spillover effects of public transportation means: An intra-modal GVAR approach for Athens. Transportation Research Part E: Logistics and Transportation Review, 82, 1-18.
- Noroozian Maleki, P., Izad Bakhsh, H., Ghanir Tehrani, N. & Ardestani, Z. (2018). Predicting the demand for sustainable urban transportation and analyzing the policies governing it through the dynamics of systems based on model simulation: A case study of Tehran. Master Thesis, Department of Industrial Engineering, Kharazmi University, Faculty of Engineering (In Persian).
- Orturzar, J., de, D., Willumsen, L.G. (2006). In: Modelling Transport 3th edition John Wiley and Sons 497p.
- Park, H.J., & Fuller, W.A. (1995). Alternative estimators and unit root tests for the autoregressive process. Journal of Time Series Analysis, 16(4), 415–429.
- Paulley, N., Balcombe, R.,Mackett, R.,Titheridge, H.,Preston, J.,Wardman, M.,Shires, J. & White, P. (2006). The demand for public transport: The effects of fares, quality of service, income and car ownership. Transport Policy, 13(4), 295-306.
- Performance report of Tehran Transport and Traffic Deputy (2020) (In Persian).
- Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics letters, 58(1), 17-29.
- Pesaran, M. H., & Smith, R. (2006). Macroeconometric modelling with a global perspective. The Manchester School, 74, 24-49.
- Pesaran, M.H., Schuermann, T., & Weiner, S.M. (2004). Modelling regional interdependencies using a global error-correcting macro econometric model. Journal of Business & Economic Statatistics. Stat. 22, 129–162.
- Plakandaras, V., Papadimitriou, T., & Gogas, P. (2019). Forecasting transportation demand for the US market. Transportation Research Part A: Policy and Practice, 126, 195-214.
- Poorahmad, A. Omranzadeh, B. & Mahdi, A. (2016). Evaluation and Prioritization of Various High-Speed Public Transportation Systems in the Metropolis of Tehran Using Efficient Models. Journal of Geography and Regional Development, 12(23), 86-65 (In Persian).
- Rietveld, P., Bruinsma, F., & van Vuuren, D.J. (2001). Coping with unreliability in public transport chains: a case study for Netherlands. Transportation Research Part A: Policy and Practice, 35, 539–559.
- Statistics Center of Iran (2018). Statistical data and information, statistical yearbook system, labor force (In Persian).
- Statistics of Tehran Megacity (2019). Statistical yearbook of Tehran municipality, Compiled by Tehran Municipality Information and Communication Technology Organization (In Persian).
- Sungurtekin H.B. (2020). An Analysis of International Shock Transmission: A Multi-Level Factor Augmented Time-Varying GVAR Approach. Available at SSRN 3398285.
- Tang, L., & Thakuriah, P. V. (2012). Ridership effects of real-time bus information system: A case study in the City of Chicago. Transportation Research Part C: Emerging Technologies22, 146-161.
- Toro-González, D., Cantillo, V., & Cantillo-García, V. (2020). Factors influencing demand for public transport in Colombia. Research in Transportation Business & Management, 100514.
- www.cbi.ir